TEST BOOKLET
MATHEMATICAL SCIENCE
PAPER III

Time Allowed : 2½ Hours] [Maximum Marks : 150

All questions carry equal marks.

INSTRUCTIONS

1. Write your Roll Number only in the box provided alongside.
   Do not write anything else on the Test Booklet.

2. This Test Booklet contains 75 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.

3. After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with ball point pen as shown below. H.B. Pencil should not be used in blackening the circle to indicate responses on the answer sheet. In the following example, response “C” is so marked:

   A B C D

4. Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. You may clearly note that since the answer sheets are to be scored/evaluated on machine, any violation of the instructions may result in reduction of your marks for which you would yourself be responsible.

5. You have to mark all your responses ONLY on the ANSWER SHEET separately given. Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined. Use ball point pen for marking responses.

6. All items carry equal marks. Attempt all items.

7. Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions.

8. After you have completed the test, hand over OMR answer-sheet to the Invigilator.

9. In case of any discrepancy found in English and Hindi Version in this paper, the English Version may be treated as correct and final.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

1

P.T.O.
Note:—This paper contains seventy five (75) multiple choice questions. Each question carries two (2) marks. Attempt all questions.

1. A graph $G$ with vertices $V \geq 3$ is Hamiltonian if:

   (A) every vertex has degree less than $\frac{V}{2}$

   (B) every vertex has degree at most $\frac{V}{2}$

   (C) every vertex has degree at least $\frac{V}{2}$

   (D) none of the above

   Or

   The probability of survival of a five component series system for at least 100 days, when the lifetime of each component is independently and identically distributed as one parameter exponential with mean life $\theta$, is:

   (A) $e^{-100/\theta}$

   (B) $e^{-5/\theta}$

   (C) $e^{-500/\theta}$

   (D) $e^{-5000/\theta}$

2. Let $v_1 = (1, 0, 2)$ and $v_2 = (0, 3, 1)$ in $\mathbb{R}^3$. A vector in $\mathbb{R}^3$ orthogonal to both $v_1$ and $v_2$ is:

   (A) $\left(-2, \frac{-1}{3}, 1\right)$

   (B) $\left(2, -1, \frac{1}{3}\right)$

   (C) $\left(\frac{2}{3}, -1, 1\right)$

   (D) none of these
गणितीय विज्ञान
प्रश्न-पत्र III

नोट:—इस प्रश्न-पत्र में पचहत्तर (75) बहुविकल्पी प्रश्न हैं। प्रत्येक प्रश्न के दो (2) अंक हैं। सभी प्रश्नों के उत्तर दीजिये।

1. वर्टिसिस (शीर्ष) \( V \geq 3 \) के साथ ग्राफ \( G \) हैमिल्टनवादी होगा, यदि :

(A) प्रत्येक शीर्ष (वर्टेक्स) की डिग्री \( \frac{V}{2} \) से कम है।

(B) प्रत्येक शीर्ष की डिग्री अधिक से अधिक \( \frac{V}{2} \) है।

(C) प्रत्येक चर्ग की डिग्री कम से कम \( \frac{V}{2} \) है।

(D) उपयुक्त में से कोई नहीं।

अन्वेषण

जब प्रत्येक घटक की जीवनावधि, औसत जीवन \( \Theta \) के साथ एक चतुर्भाषात्बन्ध के रूप में स्वतंत्र रूप से और तदरूप से वितरित है, तो कम से कम 100 दिनों के लिए पाँच घटक श्रेणी तंत्र की उत्तरजीविता की प्रायिकता क्या होगी?

(A) \( e^{-100/\Theta} \)

(B) \( e^{-5/\Theta} \)

(C) \( e^{-500/\Theta} \)

(D) \( e^{-5000} \)

2. मान लीजिए \( \mathbb{R}^3 \) में \( v_1 = (1, 0, 2) \) और \( v_2 = (0, 3, 1) \) है तो \( \mathbb{R}^3 \) में सदिश जो \( v_1 \) और \( v_2 \) के प्रति लाभिक है क्या होगा?

(A) \( \left( -2, -\frac{1}{3}, 1 \right) \)

(B) \( \left( 2, -1, \frac{1}{3} \right) \)

(C) \( \left( \frac{2}{3}, -1, 1 \right) \)

(D) इनमें से कोई नहीं।

T.B.C.: 43/13/ET-111

3

P.T.O.
The Dual simplex method:

(A) The iterations move towards feasibility maintaining optimality

(B) The iterations move towards optimality maintaining feasibility

(C) The iterations maintain both feasibility and optimality

(D) None of the above

The value of the integral

\[ \iiint_{\Omega} e^{x+y+z} \, dx \, dy \, dz \]

where \( \Omega \): positive octant such that \( x + y + z \leq 1 \) is:

(A) \( \frac{1}{2} (e - 2) \)

(B) \( \frac{1}{4} (e - 2) \)

(C) \( \frac{1}{2} (e + 2) \)

(D) \( \frac{1}{4} (e + 4) \)

If \( T \) is any unbiased estimator of \( e^{-\lambda} \) based on a random sample of size \( n \) from Poisson distribution with mean \( \lambda \), then variance of \( T \) is greater than or equal to:

(A) \( \frac{\lambda e^{-2\lambda}}{n} \)

(B) \( \frac{e^{-2\lambda}}{n} \)

(C) \( n\lambda e^{-2\lambda} \)

(D) \( ne^{-2\lambda} \)

If \( T \) is a tree with \( V \) vertices and \( E \) edges, then:

(A) \( E = V \)

(B) \( E = V - 1 \)

(C) \( E = V - 2 \)

(D) \( E = V - 3 \)

T.B.C.: 43/13/ET-3
अथवा

हैत एकल विधि में :

(A) पुनरावृतियाँ इष्टतमता कायम रखते हुए सुसंगतता की ओर बढ़ती हैं
(B) पुनरावृतियाँ सुसंगतता कायम रखते हुए इष्टतमता की ओर बढ़ती हैं
(C) पुनरावृतियाँ सुसंगतता तथा इष्टतमता दोनों कायम रखती हैं
(D) उपयुक्त में से कोई नहीं

3. समाकल

\[ \iiint_{\Omega} e^{x+y+z} \, dx \, dy \, dz \]

जहाँ \( \Omega \) : इस प्रकार से धनात्मक अस्तिंशक है कि \( x + y + z \leq 1 \) का मान है :

(A) \( \frac{1}{2} (e - 2) \)
(B) \( \frac{1}{4} (e - 2) \)
(C) \( \frac{1}{2} (e + 2) \)
(D) \( \frac{1}{4} (e + 4) \)

अथवा

यदि माध्य \( \lambda \) के साथ प्राप्त की तट की यादृच्छिक प्रतिदर्श पर आधारित \( e^{-\lambda} \) का कोई भी अन्तिरित आकलन \( T \) है, तो \( T \) का प्रसरण निम्नलिखित से वृद्दित हो या उसके

(B) \( e^{-2\lambda} \)

4. यदि \( T \) वृक्ष है जिसके \( V \) चरित्रित (शीर्ष) और \( E \) कोर हैं तो फिर :

(A) \( E = V \)
(B) \( E = V - 1 \)
(C) \( E = V - 2 \)
(D) \( E = V - 3 \)

T.B.C.: 43/13/ET-III.

P.T.O.
Consider the following integer programming problem (IPP):
Min.
\[ Z = 4x + 3y \]
S.t.
\[ 5x + 3y \geq 30 \]
\[ x \leq 4 \]
\[ y \leq 6 \]
\[ x, y \geq 0 \text{ and integers.} \]
The optimal value of objective function is:
(A) 26 \hspace{1cm} (B) 27
(C) 28 \hspace{1cm} (D) Infeasible solution

5. The set \( X = [1, 2) \cup [2, 3] \) is:
(A) disconnected \hspace{1cm} (B) connected
(C) an open set \hspace{1cm} (D) a countable set

Or

A parallel system:
(A) fails with the failure of any of its components
(B) survives till the survival of any of its components
(C) survives till the survival of a fixed number of its components
(D) none of the above

6. Let \( \nu \) be a signed measure on the measurable space \((X, \beta)\). Then which of the following states Hahn decomposition theorem:
(A) There exists positive sets \( A \) and \( B \) such that \( A \cap B = \emptyset \) and \( A \cup B = X \)
(B) There exists negative sets \( A \) and \( B \) such that \( A \cap B = \emptyset \) and \( A \cup B = X \)
(C) There exists a positive set \( A \) and a negative set \( B \) with \( A \cap B = \emptyset \) such that \( A \cup B = X \)
(D) There exists a positive set \( A \) and a negative set \( B \) with \( A \cap B \neq \emptyset \) such that \( A \cup B = X \)

T.B.C.: 43/13/ET -
अथवा

निम्नलिखित पूर्णांक प्रोग्रामन समस्या (IPP) पर विचार कीजिएः

Min.

\[ Z = 4x + 3y \]

S.t.

\[ 5x + 3y \geq 30 \]
\[ x \leq 4 \]
\[ y \leq 6 \]

\[ x, y \geq 0 \] तथा समाकल

तो उद्देश्य फलन का इष्टमाल मान होगाः

(A) 26 \hspace{2cm} (B) 27

(C) 28 \hspace{2cm} (D) असंगत हल

5. समुच्चय \( X = [1, 2) \cup [2, 3] \) हैः

(A) असमंजसित/असंबंध समुच्चय \hspace{2cm} (B) समंजसित/संबंध समुच्चय

(C) विभूत समुच्चय \hspace{2cm} (D) गणनीय समुच्चय

अथवा

समान्तर तंत्रः

(A) अपने किसी भी घटक की असफलता के साथ विफल हो जाता है

(B) अपने किसी भी घटक की उत्तरजीवितता रहने तक उत्तरजीवित रहता है

(C) स्थिर संख्या के अपने घटकों की उत्तरजीवितता रहने तक उत्तरजीवित रहता है

(D) उपर्युक्त में से कोई नहीं

6. मान लीजिए मापनीय स्थान \( (X, \beta) \) पर संचिह्न माप \( v \) है, तो फिर हानि विभेदक प्रमेय को निम्नलिखित में से कौनसा बताता हैः

(A) धनात्मक समुच्चय \( A \) तथा \( B \) विचित्रपाल न्याय है ऐसे कि \( A \cap B = \phi \) और \( A \cup B = X \) है

(B) अण्नात्मक समुच्चय \( A \) और \( B \) विचित्रपाल न्याय है ऐसे कि \( A \cap B = \phi \) और \( A \cup B = X \) है

(C) धनात्मक समुच्चय \( A \) और \( A \cap B = \phi \) के साथ अण्नात्मक समुच्चय \( B \) विचित्रपाल न्याय है ऐसे कि \( A \cup B = X \) है

(D) धनात्मक समुच्चय \( A \) और \( A \cap B \neq \phi \) के साथ अण्नात्मक समुच्चय विचित्रपाल न्याय है ऐसे कि \( A \cup B = X \) है

T.B.C.: 43/13/ET-333

P.T.O.
Consider the LPP:
Max.
\[ Z = C^T X \]
s.t.
\[ AX = b \]
\[ X \geq 0 \]
where \( C \) is a \( n \times 1 \), \( b \geq 0 \) and \( m \times 1 \), \( A \) is \( m \times n \) matrix. Then in the revised simplex method the dimension of basis is:
(A) \( m - 1 \) \hspace{1cm} (B) \( m \)
(C) \( m + 1 \) \hspace{1cm} (D) can't say

7. Let \( C \) be the space of all convergent sequences of scalars. Then the dual of \( C \) is:
(A) \( l^2 \) \hspace{1cm} (B) \( C_{00} \)
(C) \( l^1 \) \hspace{1cm} (D) \( l^p \) (\( D < p < 1 \))

Or

Let \( X_1 \) and \( X_2 \) be two independent Poisson variates with common parameter \( \theta \). Consider the following statistics for \( \theta \):
(i) \( T_1 = X_1 + X_2 \)
(ii) \( T_2 = X_1 + 2X_2 \)

Then:
(A) \( T_1 \) and \( T_2 \) are both sufficient for \( \theta \)
(B) \( T_2 \) is sufficient but \( T_1 \) is not sufficient for \( \theta \)
(C) \( T_1 \) is sufficient but \( T_2 \) is not sufficient for \( \theta \)
(D) Both \( T_1 \) and \( T_2 \) are not sufficient for \( \theta \)
अध्ययन

LPP :

Max. 

\[ Z = C^T X \]

s.t.

\[ AX = b \]

\[ X \geq 0 \text{ पर विचार करें} \]

जहाँ \( C, n \times 1, b \geq 0 \) और \( m \times 1 \) है, और \( A, m \times n \) आवृत्ति है तो फिर संशोधित एकल विधि में आधार की विमा होगी:

(A) \( m - 1 \) 
(B) \( m \)

(C) \( m + 1 \) 
(D) कह नहीं सकते

मान लीजिए अदिशों के सभी अभिसारी अनुक्रमों का दिक्स्थान \( C \) है तो फिर \( C \) का हैवत है:

(A) \( l^2 \) 
(B) \( C_{00} \)

(C) \( l^1 \) 
(D) \( l^p \) (\( D < p < 1 \))

अध्ययन

मान लीजिये \( X_1 \) और \( X_2 \) दो स्वतन्त्र प्रासों विचार है जिनका सर्वोच्च प्राचल \( \theta \) है। \( \theta \) के लिए निम्नलिखित ऑक्सड़ पर विचार कीजिए:

(i) \( T_1 = X_1 + X_2 \)
(ii) \( T_2 = X_1 + 2X_2 \)

तो फिर:

(A) \( T_1 \) और \( T_2 \) दोनों \( \theta \) के लिए पर्याप्त है
(B) \( \theta \) के लिए \( T_2 \) पर्याप्त है परन्तु \( T_1 \) पर्याप्त नहीं है
(C) \( \theta \) के लिए \( T_1 \) पर्याप्त है परन्तु \( T_2 \) पर्याप्त नहीं है
(D) \( T_1 \) और \( T_2 \) दोनों \( \theta \) के लिए पर्याप्त नहीं हैं
8. Fourier cosine transform of $e^{2x}$ is:

(A) $\frac{-s}{4 + s^2}$

(B) $\frac{s}{4 + s^2}$

(C) $\frac{-2}{4 + s^2}$

(D) $\frac{2}{4 + s^2}$

Or

In parametric linear programming:

(A) The objective function and the decision variables are replaced with the parameterized functions

(B) The right-hand side vectors and decision variables are replaced with the parameterized functions

(C) The objective function and the right-hand side vectors are replaced with the parameterized functions

(D) Any of the above statements can be true

9. If a space $X$ has a countable open base for its topology, then $X$ is said to be:

(A) first countable

(B) second countable

(C) Hausdorff

(D) metrizable

Or

Stable population analysis is done with respect to:

(A) Male population only

(B) Female population only

(C) Both male and female populations

(D) None of the above

T.B.C.: 43/13/ET-III
8. $e^{2x}$ का फूरिये कोज्या रूपान्तर हैं:

(A) $\frac{-s}{4 + s^2}$  
(B) $\frac{s}{4 + s^2}$  
(C) $\frac{-2}{4 + s^2}$  
(D) $\frac{2}{4 + s^2}$

अध्ययन

प्राचीन रेखिक एपिप्रोग्राम में:

(A) उद्देश्य फलन तथा निर्णय चर प्राचलीकृत फलनों के साथ प्रतिस्थापित होते हैं

(B) दाहिने ओर के सदिश एवं निर्णय चर प्राचलीकृत फलनों के साथ प्रतिस्थापित होते हैं

(C) उद्देश्य फलन तथा दाहिने ओर के सदिश प्राचलीकृत फलनों के साथ प्रतिस्थापित होते हैं

(D) उपर्युक्त कथनों में से कोई भी सत्य हो सकता है

9. यदि समस्त $X$ का अपनी सांस्थिकतिकी के लिए गणनीय विवृत्त आधार है, तो फिर माना जाता है कि $X$ होगा:

(A) प्रथम गणनीय  
(B) द्वितीय गणनीय  
(C) हाउसडॉर्फ  
(D) दूरीकर्णीय

अध्ययन

स्थायी जनसंख्या विश्लेषण किसके सम्बन्ध में किया जाता है?

(A) केवल पुरुष जनसंख्या  
(B) केवल स्त्रियों की जनसंख्या  
(C) पुरुष एवं स्त्री दोनों की जनसंख्या  
(D) उपर्युक्त में से कोई नहीं
10. The sequence space $l^p$ is strictly convex if and only if:

(A) $p = 1$ \hspace{1cm} (B) $1 < p < \infty$

(C) $0 < p < 1$ \hspace{1cm} (D) $1 \leq p \leq \infty$

Or

Consider the non-linear programming problem:

Min:

$f(X)$

s.t.

$g_i(X) \leq 0, \ i = 1, 2, \ldots, m$

If $X_0$ is a local optimal solution to the given problem, then:

(A) $\nabla f(X_0)^T d > 0$, for all $d \in \bar{D} (X_0)$

(B) $\nabla f(X_0)^T d \geq 0$, for all $d \in \bar{D} (X_0)$

(C) $\nabla f(X_0)^T d < 0$, for all $d \in \bar{D} (X_0)$

(D) $\nabla f(X_0)^T d \leq 0$, for all $d \in \bar{D} (X_0)$

11. What is the remainder when $5^{48}$ is divided by $12$:

(A) 1 \hspace{1cm} (B) 3

(C) 5 \hspace{1cm} (D) none of these

Or

Let $X_1, X_2, X_3, X_4, X_5$ be a random sample from an exponential distribution with mean 0.5. If $Y = \min (X_1, X_2, X_3, X_4, X_5)$, then the value of $P(Y > 0.1)$ is:

(A) $e^{-1}$ \hspace{1cm} (B) $e^{-0.5}$

(C) $e^{-5}$ \hspace{1cm} (D) $e^{-2}$
10. अनुक्रम सममिति (स्पेस) $l'$ तथा ओर सिफ तथा दुर्गा: अवमुख होता है जब:

(A) $p = 1$

(B) $1 < p < \infty$

(C) $0 < p < 1$

(D) $1 \leq p \leq \infty$

अथवा

अरेखिक प्रोग्रामन समस्या:

Min:

$f(X)$

s.t.

$g_i(X) \leq 0, i = 1, 2, \ldots, m$

पर विचार करें।

चाहे प्रदत्त समस्या का स्थानीय इप्स्टम हल $X_0$ है, तो फिर:

(A) $\nabla f(X_0)^T d > 0$, सभी $d \in \overline{D}(X_0)$ के लिए

(B) $\nabla f(X_0)^T d \geq 0$, सभी $d \in \overline{D}(X_0)$ के लिए

(C) $\nabla f(X_0)^T d < 0$, सभी $d \in \overline{D}(X_0)$ के लिए

(D) $\nabla f(X_0)^T d \leq 0$, सभी $d \in \overline{D}(X_0)$ के लिए

11. जब $548$ को $12$ से विभाजित किया जाता है तो शेष क्या होता है?

(A) 1

(B) 3

(C) 5

(D) इनमें से कोई नहीं

अथवा

मान लीजिये कि चरणांक पर बंटन से यादृच्छिक प्रतिदर्श $X_1, X_2, X_3, X_4, X_5$ है जिसका माध्य 0.5 है। यदि $Y = संयुक्त (X_1, X_2, X_3, X_4, X_5)$ है, तो $P(Y > 0.1)$ का मान होगा:

(A) $e^{-1}$

(B) $e^{-0.5}$

(C) $e^{-5}$

(D) $e^{-2}$

T.B.C. : 43/13/ET-III
12. Let $H$ be a Hilbert space, and let $f$ be an arbitrary functional in $H^*$. Then there exists a unique vector $y$ in $H$ such that:

(A) $f(x) \neq \langle x, y \rangle$, for every $x$ in $H$

(B) $f(x) = \langle y, y \rangle$, for every $x$ in $H$

(C) $f(x) = \langle x, y \rangle$, for every $x$ in $H$

(D) $f(x) < |\langle x, y \rangle|^2$, for every $x$ in $H$

Or

The Kuhn-Tucker necessary conditions are also sufficient conditions:

(A) In a maximization problem, if the objective function is concave and the solution space is concave set

(B) In a minimization problem, if the objective function is concave and the solution space is concave set

(C) In a maximization problem, if the objective function is concave and the solution space is convex set

(D) In a minimization problem, if the objective function is concave and the solution space is convex set

13. The condition number of a matrix $A$ is:

(A) $\|A\|$  

(B) $\|A^{-1}\|$  

(C) $\|A\| \cdot \|A^{-1}\|$  

(D) 1

Or

Net reproduction rate is a measure of:

(A) Fertility only

(B) Mortality only

(C) Fertility with the component of mortality built into it

(D) Fertility with no mortality

T.B.C.: 43/13/ET-III
12. मान लीजिये $H$ हिलबर्ट समस्ति है, और मान लीजिये $f, H^*$ में स्वेच्छा फलन है, तो $H$ में असंघारण/अद्धन अपरिमिता मौजूद है, ऐसे कि:

(A) $H$ में प्रत्येक $x$ के लिए $f(x) \neq \langle x, y \rangle$

(B) $H$ में प्रत्येक $x$ के लिए $f(x) = \langle y, y \rangle$

(C) $H$ में प्रत्येक $x$ के लिए $f(x) = \langle x, y \rangle$

(D) $H$ में प्रत्येक $x$ के लिए $f(x) < \langle x, y \rangle^2$

अथवा

कुछ-टक्कर अनिवार्य स्थितियाँ पर्याय स्थितियाँ भी हैं:

(A) अधिकतमीकरण समस्या में, यदि उद्देश्य फलन उन्मुख है और समाधान समाप्ति अवतल समुच्चय है

(B) न्यूटनमीकरण समस्या में, यदि उद्देश्य फलन उन्मुख है और समाधान समाप्ति अवतल समुच्चय है

(C) अधिकतमीकरण समस्या में, यदि उद्देश्य फलन उन्मुख है और समाधान समाप्ति अवमुख समुच्चय है

(D) न्यूटनमीकरण समस्या में, यदि उद्देश्य फलन उन्मुख है और समाधान समाप्ति अवमुख समुच्चय है

13. आय्यूब $A$ का कंडीशन नब्बर है:

(A) $\| A \|$

(B) $\| A^{-1} \|$

(C) $\| A \| \cdot \| A^{-1} \|$

(D) 1

अथवा

निवल प्रजनन दर किसका माप है?

(A). केवल प्रजनन शक्ति

(B) केवल मृत्यु दर

(C) मृत्यु के घटक के साथ प्रजनन शक्ति

(D) मृत्यु के घटक के बगीर प्रजनन शक्ति

T.B.C. : 43/13/ET-111

P.T.O.
14. Let \((X, \mu)\) and \((Y, \nu)\) be two measurable spaces. For any subset \(E\) of \(X \times Y\) and \(x \in X\), define \(E_x = \{y : (x, y) \in E\}\). If \((\mu \times \nu)(E) = 0\), then:
(A) \(\nu(E_x) \neq 0\), for all \(x \in X\)
(B) \(\nu(E_x) = 0\), for all \(x \in X\)
(C) \(\nu(E_x) \neq 0\), for almost all \(x \in X\)
(D) \(\nu(E_x) = 0\), for almost all \(x \in X\)

Or

The dual of the given non-linear problem:
Min.
\(\phi(X)\)
St.
\(AX \leq b\)
\(X \geq 0\)
is:
(A) Max.
\[\psi(X, U) = X^T\phi(X) - b^TU\]
St.
\[\forall\phi(X) + A^TU \geq 0\]
\(U \geq 0\)
(B) Max.
\[\psi(X, U) = X^T\phi(X) + b^TU\]
St.
\[\forall\phi(X) + A^TU \geq 0\]
\(U \geq 0\)
(C) Max.
\[\psi(X, U) = \phi(X) + X^T\phi(X) + b^TU\]
St.
\[\forall\phi(X) + A^TU \geq 0\]
\(U \geq 0\)
(D) Max.
\[\psi(X, U) = \phi(X) - X^T\phi(X) - b^TU\]
St.
\[\forall\phi(X) + A^TU \geq 0\]
\(U \geq 0\)
14. मान लीजिये \((X, \mu)\) और \((Y, v)\) दो मापनीय समयरास्थियाँ हैं। \(X \times Y\) और \(x \in X\) के किसी भी उपसमुच्चय के लिए \(E_x\) की व्याख्या \(= \{y : (x, y) \in E\}\) है तो यदि \((\mu \times v) (E) = 0\) है,
तो फिर :
(A) \(v(E_x) \neq 0\), सभी \(x \in X\) के लिए
(B) \(v(E_x) = 0\), सभी \(x \in X\) के लिए
(C) \(v(E_x) \neq 0\), लगभग सभी \(x \in X\) के लिए
(D) \(v(E_x) = 0\), लगभग सभी \(x \in X\) के लिए

अतः

दी गई अरेंजीक समस्या : 

Min.

\[ \phi(X) \]

S.t.

\[ AX \leq b \]

\[ X \geq 0 \]

का हैत है :

(A) Max.

\[ \psi(X, U) = X^T\phi(X) - b^TU \]

S.t.

\[ \nabla\phi(X) + A^TU \geq 0 \]

\[ U \geq 0 \]

(B) Max.

\[ \psi(X, U) = X^T\phi(X) + b^TU \]

S.t.

\[ \nabla\phi(X) + A^TU \geq 0 \]

\[ U \geq 0 \]

(C) Max.

\[ \psi(X, U) = \phi(X) + X^T\phi(X) + b^TU \]

S.t.

\[ \nabla\phi(X) + A^TU \geq 0 \]

\[ U \geq 0 \]

(D) Max.

\[ \psi(X, U) = \phi(X) - X^T\phi(X) - b^TU \]

S.t.

\[ \nabla\phi(X) + A^TU \geq 0 \]

\[ U \geq 0 \]
15. The Newton method for finding the positive square root of $R > 0$ is:

(A) \[ x_{i+1} = \frac{x_i x_{i-1} + R}{x_i + x_{i-1}} \]

(B) \[ x_{i+1} = \frac{1}{2} \left( x_{i-1} + \frac{R}{x_i} \right) \]

(C) \[ x_{i+1} = \frac{1}{2} \left( x_i + \frac{R}{x_i} \right) \]

(D) \[ x_{i+1} = \frac{2x_i^2 + x_i x_{i-1} - R}{x_i + x_{i-1}} \]

Or

If $\hat{\beta}$ is a solution of the normal equation:

\[ X' \times \hat{\beta} = X' Y \]

in the Gauss-Markov set up $(Y, X\hat{\beta}, \sigma^2 I)$, then which one of the following is not correct?

(A) In general, $\hat{\beta}$ is not an unbiased estimator of $\beta$

(B) $E(Y - X\hat{\beta}) = 0$

(C) $D(Y - X\hat{\beta}) = D(Y) + D(X\hat{\beta})$

(D) $\text{Cov}(Y - X\hat{\beta}, X\hat{\beta}) = 0$

16. The stress tensor at a point with respect to the axes $x, y, z$ is given by:

\[ \sigma_{ij} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \]

Then principal stresses are:

(A) $(2, 1, -1)$

(B) $(-2, -1, 2)$

(C) $(-2, -2, 1)$

(D) $(2, -1, -1)$

T.B.C. : 43/13/ET
15. $R > 0$ का धनात्मक वर्गूल ज्ञात करने के लिए न्यूटन विधि है:

(A) $x_{i+1} = \frac{x_i x_{i-1} + R}{x_i + x_{i-1}}$

(B) $x_{i+1} = \frac{1}{2} \left( x_{i-1} + \frac{R}{x_i} \right)$

(C) $x_{i+1} = \frac{1}{2} \left( x_i + \frac{R}{x_i} \right)$

(D) $x_{i+1} = \frac{2x_i^2 + x_i x_{i-1} - R}{x_i + x_{i-1}}$

अभ्यास

यदि गौस-मार्कोव व्यवस्था ($Y, X\beta, \sigma^2 I$) में, सामान्य समीकरण $X' \times \beta = X'Y$ का हल $\beta$ है, तो फिर निम्नलिखित में से कौन सही नहीं है?

(A) सामान्यतः $\beta$ का अन्धकार अवकल $\dot{\beta}$ नहीं होता है

(B) $E(Y - X\dot{\beta}) = 0$

(C) $D(Y - X\dot{\beta}) = D(Y) + D(X\dot{\beta})$

(D) $Cov(Y - X\dot{\beta}, X\dot{\beta}) = 0$

16. अश्रों $x, y, z$ के सार्वप्रति बिन्दु पर प्रतिबंध-प्रदिश $\sigma_{\nu} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ के द्वारा दिया गया है।

मुख्य प्रतिबंध हैं:

(A) $(2, 1, -1)$

(B) $(-2, -1, 2)$

(C) $(-2, -2, 1)$

(D) $(2, -1, -1)$

T.B.C. : 43/13/ET-111

P.T.O.
Consider the LPP:

Max 

\[ Z = 30x + 20y \]

s.t.

\[ 2x + y \leq 8 \text{ (machine 1)} \]
\[ x + 3y \leq 8 \text{ (machine 2)} \]
\[ x, y \geq 0 \]

If the daily capacity of machine 1, is increased from 8 hours to 9 hours, the new optimal solution will be:

(A) 128  
(B) 132  
(C) 138  
(D) 142

17. Galois group of \((x^2 - 2) (x^2 + 2)\) over \(\theta\) is isomorphic to:

(A) \( \mathbb{Z}_4 \)  
(B) \( \mathbb{Z}_2 \times \mathbb{Z}_2 \)  
(C) \( D_2 \)  
(D) None of these

Or

\( nL_x \) column in an abridged life table represents:

(A) number of persons alive between ages \(x\) and \(x + n\)  
(B) person-years lived by the Cohort during the age interval \((x - x + n)\)  
(C) number of deaths during the age interval \((x - x + n)\)  
(D) probability of dying in the age interval \((x - x + n)\)

T.B.C. : 43/13/ET-
LPP:

Max

\[ Z = 30x + 20y \]

s.t.

\[ 2x + y \leq 8 \text{ (मशीन 1)} \]
\[ x + 3y \leq 8 \text{ (मशीन 2)} \]
\[ x, y \geq 0 \]

पर विचार कीजिए।

यदि मशीन 1 की दैनिक क्षमता 8 घण्टे से बढ़ा कर 9 घण्टे कर दी जाती है, तो नवीन इस्तेमाल हल क्या होगा?

(A) 128  
(B) 132  
(C) 138  
(D) 142

17. \( \theta \) के सापेख (पर) \( (x^2 - 2)(x^2 + 2) \) का गाल्बा ग्रुप किसके प्रति लांबिक है?

(A) \( \mathbb{Z}_4 \)  
(B) \( \mathbb{Z}_2 \times \mathbb{Z}_2 \)  
(C) \( \mathbb{D}_2 \)  
(D) इनमें से कोई नहीं

अथवा

संक्षिप्त जीवन सारणी में \( nL_x \) स्तम्भ क्या निरूपित करता है?

(A) \( x \) और \( x + n \) वर्ष की आयु के बीच जीवित व्यक्तियों की संख्या  
(B) वयस्क अंतराल \( (x-x+n) \) के दौरान कोहोर्ट अनुसार व्यक्ति-वर्ष जीवित रहें  
(C) वयस्क अंतराल \( (x-x+n) \) के दौरान मृत्यु की संख्या  
(D) वयस्क अंतराल \( (x-x+n) \) में मृत्यु की प्रायिकता
18. Let $k$ be a splitting field of a polynomial $f(x)$ over a field $F$.

$$O(\text{Gal}(K/F)) = [K : F]$$

if

(A) a irreducible factor of $f(x)$ has repeated roots
(B) no irreducible factor of $f(x)$ has repeated roots
(C) $\text{GCD}(f'(x), f(x)) \neq 1$
(D) None of the above

Or

Choose the incorrect statement:

(A) Dynamic programming is a technique of optimizing a multi-stage decision process
(B) Dynamic programming refers to problems in which changes over time are important
(C) Dynamic programming is based on Markovian property
(D) None of the above

19. $\mathbb{Z}[x]/\langle 1 + x^2 \rangle$ has number of elements:

(A) 4
(B) 9
(C) 8
(D) None of these

Or

If $X_1, X_2, \ldots, X_n$ be a random sample from $N(0, 1)$ distribution and the prior distribution of $\theta$ is $N(0, 1)$, then the Bayes' estimator of $\theta$ is:

(A) $\bar{X}$
(B) $\frac{n\bar{X}}{n + 1}$
(C) $\frac{\bar{X}}{n + 1}$
(D) $\frac{\bar{X}}{n}$

T.B.C. : 43/13/ET-III 22
18. मान लीजिये $f(x)$ फील्ड है, फील्ड F पर बहुपद $f(x)$

$O(\text{Gal}(K/F)) = [K : F]$ होगा

यदि:

(A) $f(x)$ के अखंडनीय कारक के पुनरावृत मूल हैं
(B) $f(x)$ के किसी भी अखंडनीय कारक के पुनरावृत मूल नहीं हैं
(C) $\text{GCD}(f'(x), f(x)) \neq 1$
(D) उपर्युक्त में से कोई नहीं

अथवा

विषय कथन का चयन कीजिए:

(A) गत्तयात्मक प्रोग्राम बहु-अवस्था निर्माण प्रक्रिया की इम्प्लेमेंट करने की तकनीक है
(B) गत्तयात्मक प्रोग्राम उन संस्थाओं से संबंधित रखता है जिसमें समयोपरि परिवर्तन महत्वपूर्ण है
(C) गत्तयात्मक प्रोग्राम मार्कोवबादी गुणधर्म पर आधारित है
(D) उपर्युक्त में से कोई नहीं

19. $\mathbb{Z}_3[x]/<1 + x^2>$ के कितने अवयव हैं?

(A) 4
(B) 9
(C) 8
(D) इनमें से कोई नहीं

अथवा

यदि $N(0, 1)$ बंटन का यादृच्छिक प्रतिदर्श $X_1, X_2, \ldots, X_n$ है और $\theta$ का पहला बंटन $N(0, 1)$ है, तो $\theta$ का बेज आकल होगा:

(A) $\bar{X}$
(B) $\frac{n\bar{X}}{n + 1}$
(C) $\frac{\bar{X}}{n + 1}$
(D) $\frac{\bar{X}}{n}$

T.B.C.: 43/13/ET-111 23

P.T.O.
20. If $p$ and $q$ are the generalized momentum and coordinate of a Hamiltonian system described by $H = \frac{1}{2}(p^2 - q^2)$, the equation of motion is given by:

(A) $\frac{d^2q}{dt^2} - q = 0$  \hspace{1cm} (B) $\frac{d^2q}{dt^2} + q = 0$

(C) $\frac{d^2q}{dt^2} + \frac{dq}{dt} + q = 0$  \hspace{1cm} (D) $\frac{d^2q}{dt^2} + \frac{dq}{dt} - q = 0$

Or

For $(M|G|1)$ : $(GD|\infty|\infty)$ queuing system, where $\lambda$ be the arrival rate, $E(t)$ and $\text{var}(t)$ represent the service time distribution, the number of customer in the system is:

(A) $\lambda E(t) + \frac{\lambda^2[E^2(t) + \text{var}(t)]}{2(1 - \lambda E(t))}; \lambda E(t) < 1$

(B) $\lambda E(t) + \frac{\lambda[E^2(t) + \text{var}(t)]}{2[1 - \lambda E(t)]}; \lambda E(t) < 1$

(C) $\lambda E(t) + \frac{\lambda^2[E^2(t) + \text{var}(t)]}{2[1 + \lambda E(t)]}; \lambda E(t) < 1$

(D) $\lambda E(t) + \frac{\lambda^2[E^2(t) + \text{var}(t)]}{[1 - \lambda E(t)]}; \lambda E(t) < 1$
यदि $p$ और $q$ हैमिल्टनी व्यवस्था के सामान्यवृक्ष संबंध तथा निर्देशांक हैं जो $H = \frac{1}{2}(p^2 - q^2)$
द्वारा परिभाषित किये जाते हैं, तो गति का समीकरण किसके द्वारा दिया जाता है?

(A) $\frac{d^2q}{dt^2} - q = 0$
(B) $\frac{d^2q}{dt^2} + q = 0$

(C) $\frac{d^2q}{dt^2} + \frac{dq}{dt} + q = 0$
(D) $\frac{d^2q}{dt^2} + \frac{dq}{dt} - q = 0$

अथवा

(M|G|1) : (GD|\infty|\infty) परिमाप प्रणाली के लिए, जहाँ $\lambda$ आगमन दर है, $E(t)$ और $r(t)$
व्यापक समय वितरण निरूपित करता है, प्रणाली में प्राकृतिक की संख्या हैः

(A) $\lambda E(t) + \frac{\lambda^2[E^2(t) + \text{var}(t)\\2(1 - \lambda E(t))]}{2(1 - \lambda E(t))}; \lambda E(t) < 1$

(B) $\lambda E(t) + \frac{\lambda[E^2(t) + \text{var}(t)\\2[1 - \lambda E(t)]]}{2[1 - \lambda E(t)]}$; $\lambda E(t) < 1$

(C) $\lambda E(t) + \frac{\lambda^2[E^2(t) + \text{var}(t)\\2[1 + \lambda E(t)]]}{2[1 + \lambda E(t)]}$; $\lambda E(t) < 1$

(D) $\lambda E(t) + \frac{\lambda^2[E^2(t) + \text{var}(t)\\[1 - \lambda E(t)]]}{[1 - \lambda E(t)]}; \lambda E(t) < 1$
21. If the functional \( \int_{x_i}^{x_f} \left[ f(x, y) + g(x, y) \frac{dy}{dx} \right] dx \) has an extremum value, then \( f(x, y) \) and \( g(x, y) \) are related by:

(A) \( \frac{\partial f}{\partial x} = \frac{\partial g}{\partial x} \)

(B) \( \frac{\partial f}{\partial x} = \frac{\partial g}{\partial y} \)

(C) \( \frac{\partial f}{\partial y} = \frac{\partial g}{\partial x} \)

(D) \( \frac{\partial f}{\partial y} = \frac{\partial g}{\partial y} \)

Or

The joint distribution of number of deaths \( \{d_x\}, x = 0, 1, 2, \ldots, w, \) for a life table constructed from a sample is:

(A) Binomial

(B) Poisson

(C) Multinomial

(D) Normal

22. Which of the following equations represents diffusion equation?

(A) \( \varepsilon (u_{xx} + u_{yy}) = u_t \)

(B) \( \varepsilon (u_{xx} + u_{yy}) = u_{tt} \)

(C) \( u_{xx} = u_{tt} \)

(D) \( u_{xx} + 2u_x + u_t = u_{tt} \)

Or

The annual demand of a product is 50,000 units with a purchase cost of Rs. 120. Each order costs Rs. 450 and inventory holding costs is 15% of the annual average inventory value. If the company operates 250 days a year, the procurement time is 10 days and safety stock is 500 units, then the re-order point is:

(A) 2500

(B) 2200

(C) 2000

(D) 1500
21. यदि फलन \( \int_{x_1}^{x_2} \left[ f(x, y) + g(x, y) \frac{dy}{dx} \right] dx \) का चरममान मूल्य है, तो फिर \( f(x, y) \) और \( g(x, y) \) निम्नलिखित के द्वारा सम्बन्धित होंगे:

(A) \( \frac{df}{dx} = \frac{dg}{dx} \)

(B) \( \frac{df}{dx} = \frac{dg}{dy} \)

(C) \( \frac{df}{dy} = \frac{dg}{dx} \)

(D) \( \frac{df}{dy} = \frac{dg}{dy} \)

अध्ययन

प्रतिदश दर प्रतियोगी लाभकारी के लिए मूल्य \( d_x \), \( x = 0, 1, 2, \ldots \), \( w \) की संख्याओं का संयुक्त बन्दन है:

(A) द्विपद

(B) प्लास्टो

(C) बहुपद

(D) सामान्य

22. निम्नलिखित में से कौनसा समीकरण विसर्ग समीकरण का निरूपण करता है?

(A) \( \in (u_{xx} + u_{xy}) = u_t \)

(B) \( \in (u_{xx} + u_{xy}) = u_{tt} \)

(C) \( \in u_{xx} = u_{tt} \)

(D) \( u_{xx} + 2 + u_x = u_t \)

अध्ययन

खरीद की लागत 120 रु. होने पर उत्पाद की वार्षिक मांग 50,000 इकाईयों हैं। प्रत्येक ऑर्डर की लागत 450 रु. और इनवेंट्री होल्डिंग लागत वार्षिक औसत इनवेंट्री मूल्य का 15% है। यदि कंपनी वर्ष में 250 दिन कार्य करती है, तो प्राप्ति समय 10 दिन और सुरक्षा स्टॉक 500 इकाईयों है, तो रिएंटर्डर (पून: ऑर्डर) बिनु भिनु है?

(A) 2500

(B) 2200

(C) 2000

(D) 1500

T.B.C. : 43/13/ET-111

P.T.O.
23. If \( f \) is a function of bounded variation on \([a, b]\), then:

(A) \( f'(x) \) does not exist on \([a, b]\)
(B) \( f'(x) \) exists for some point in \([a, b]\)
(C) \( f'(x) \) exists for almost all \( x \) in \([a, b]\)
(D) None of the above

Or

If \( X_1, X_2, \ldots, X_n \) are independent random observations on a variable assuming the value 1 with probability \( p \) and the value 0 with probability \( (1 - p) \), then the unbiased estimator for \( p^2 \) is:

(A) \( \bar{X}^2 \)  
(B) \( \bar{X}(\bar{X} - 1) \)
(C) \( \frac{n\bar{X}^2 - \bar{X}}{n - 1} \)  
(D) \( \bar{X}\left(\bar{X} - \frac{1}{n}\right) \)

24. The flow field of a fluid is given by \( \vec{q} = xy\hat{i} + 2yz\hat{j} \). The shear strain at the point \((2, 1)\) is given by:

(A) 1  
(B) -1
(C) 0  
(D) 2

Or

In a car washing facility, cars arrive according to a Poisson distribution with a mean of 4 cars per hour and may wait in the facility's parking lot if the bay is busy. The service time distribution is normal with mean of 12 minutes and variance of 9 minutes, then the time spent by the cars waiting to be washed in the facility is:

(A) 2.1 hours  
(B) 3.2 hours
(C) 4.2 hours  
(D) 8.4 hours

T.B.C. : 43/13/ET-III  
28
23. यदि \([a, b]\) पर परिवर्तित विचरण का फलन \(f\) है, तो फिर :

(A) \([a, b]\) पर \(f'(x)\) मौजूद नहीं है

(B) \([a, b]\) में \(f'(x)\) की बिन्दु के लिये विद्यमान होता है

(C) \([a, b]\) में लगभग सभी \(x\) के लिए \(f'(x)\) विद्यमान होता है

(D) उपर्युक्त में से कोई नहीं

अथवा

प्रायिकता \(p\) के साथ मान 1 और प्रायिकता \((1 - p)\) के साथ मान 0 मानते हुए, यदि चर के स्वतंत्र यादृच्छिक प्रेषण \(X_1, X_2, \ldots, X_n\) है तो \(p^2\) के लिए अनुमित आकलक होगा :

(A) \(X^2\)

(B) \(X(X - 1)\)

(C) \(\frac{nX^2 - X}{n - 1}\)

(D) \(X(\frac{X - 1}{n})\)

24. तरल का प्रवाह क्षेत्र \(q = xy^2 + 2yz^2\) द्वारा दिया गया है। बिन्दु \((2, 1)\) पर अपरंपर विकृति निम्नलिखित के द्वारा प्राप्त होगा :

(A) 1

(B) -1

(C) 0

(D) 2

अथवा

कार धोने के सुविधा केन्द्र में, कारें व्यापारी बंटन के अनुसार प्रति घंटा औसत 4 कारें के हिसाब से आती हैं, और यदि वे व्यस्त हैं तो केन्द्र के पारिक स्थल में प्रतीक्षा कर सकती हैं। सर्वसमय केंद्र 12 मिनटों के औसत और 9 मिनटों के प्रसरण के साथ सामान्य है, तो फिर कारों द्वारा सुविधा केन्द्र में प्रतीक्षा में बिताया समय है :

(A) 2.1 घंटे

(B) 3.2 घंटे

(C) 4.2 घंटे

(D) 8.4 घंटे

T.B.C. : 43/13/ET-1111 P.T.O.
25. Let $G$ be a region and suppose $f$ is a non-constant analytic function on $G$. Then for any open set $U$ in $G$, $f(U)$ is:

(A) open  
(B) closed  
(C) neither open nor closed  
(D) can not be open

Or

For a BIBD with parameters $r$, $v$, $b$, $k$ and $\lambda$:

(A) $r(k - 1) = \lambda(v - 1)$  
(B) $\lambda(k - 1) = r(v - 1)$  
(C) $k(\lambda - 1) = \lambda(v - 1)$  
(D) $k(r - 1) = v(\lambda - 1)$

26. If $f$ is absolutely continuous on $[a, b]$, then:

(A) $f$ does not have a derivative anywhere on $[a, b]$
(B) $f$ is constant on $[a, b]$
(C) $f$ is not of bounded variation on $[a, b]$
(D) $f$ is of bounded variation on $[a, b]$

Or

In PERT (Program Evaluation and Review Technique) analysis, the expected activity time is given by (where $t_m =$ most likely, $t_o =$ optimistic and $t_p =$ pessimistic time estimates):

(A) $\frac{1}{3} \left[ 4t_m + \frac{1}{2} (t_o + t_p) \right]$

(B) $\frac{1}{2} \left[ 4t_m + \frac{1}{3} (t_o + t_p) \right]$

(C) $\frac{1}{3} \left[ 2t_m + \frac{1}{4} (t_o + t_p) \right]$

(D) $\frac{1}{3} \left[ 2t_m + \frac{1}{2} (t_o + t_p) \right]$

T.B.C. : 43/13/ET - 11
25. मान लीजिए $G$ क्षेत्र है और मान लें $f$, $G$ का अचर बैलेन्सिक फलन है, तो फिर किसी भी संबृत समुच्चय $U$ in $G$ के लिए $f(U)$ हैः

(A) संबृत          (B) विस्तृत
(C) न संबृत न ही विस्तृत          (D) संबृत नहीं हो सकता है।

अद्धारा

प्राचलों $r$, $v$, $b$, $k$ और $\lambda$ के साथ BIBD के लिएः

(A) $r(k - 1) = \lambda(v - 1)$          (B) $\lambda(k - 1) = r(v - 1)$
(C) $k(\lambda - 1) = \lambda(v - 1)$          (D) $k(r - 1) = v(\lambda - 1)$

26. यदि $[a, b]$ पर $f$ पूर्णत्व सतत है, तो फिरः

(A) $[a, b]$ पर कहीं भी $f$ का अवकलज नहीं है
(B) $f$, $[a, b]$ पर स्थिर है
(C) $f$, $[a, b]$ पर परिवर्त विचरण का नहीं है
(D) $f$, $[a, b]$ पर परिवर्त विचरण का है

अद्धारा

पर्त (प्रोग्राम इंजीनियरिंग एण्ड रिव्यु तकनीक) विचरण में, प्रत्याशित गतिविधि समय निम्नलिखित में से किसके द्वारा दिया है (इसमें $t_m$ = सवार्धिक संभावित, $t_o$ = आशावादी और $t_p$ = निराशावादी समय आकलक)ः

(A) $\frac{1}{3} \left[ 4t_m + \frac{1}{2} (t_o + t_p) \right]$

(B) $\frac{1}{2} \left[ 4t_m + \frac{1}{3} (t_o + t_p) \right]$

(C) $\frac{1}{3} \left[ 2t_m + \frac{1}{4} (t_o + t_p) \right]$

(D) $\frac{1}{3} \left[ 2t_m + \frac{1}{2} (t_o + t_p) \right]$
27. A continuous mapping of a compact metric space into a metric space is:

(A) not continuous
(B) continuous but not uniformly continuous
(C) uniformly continuous
(D) not uniformly continuous

Or

\( X_1, X_2, \ldots, X_n \) is a random sample from \( U(0, \theta), \theta > 0 \). The MVUE of \( \theta \) is:

(A) \( nX_{(n)} \)
(B) \( \frac{n+1}{n} X_{(n)} \)
(C) \( \frac{n}{n+1} X_{(n)} \)
(D) \( X_{(n)} \)

28. The numerical evaluation of \( \int_{0}^{1} x^3 \, dx \) with 5 subintervals in the trapezoidal rule yields:

(A) 0.25
(B) 0.26
(C) 1.0
(D) 0.5
27. सहल दूरीक समाधि का दूरीक समाधि में सतत्व माननिश्चित है :

(A) सतत्व नहीं

(B) सतत्व परन्तु समरूपता से सतत्व नहीं

(C) समरूपता के साथ सतत्व

(D) असमरूप रूप से सतत्व

अथवा

U(0, θ) से X₁, X₂, ....................., Xₙ यहूदीक प्रतिदर्श है, तो θ का MVUE है :

(A) nXₙ(n)  

(B) \( \frac{n+1}{n} Xₙ(n) \)

(C) \( \frac{n}{n+1} Xₙ(n) \)

(D) Xₙ(n)

28. समलंब नियम में 5 उपअंतरालों के साथ \( \int_0^1 x^3 dx \) के संख्यात्मक मूल्यांकन से लबित होती है :

(A) 0.25  

(B) 0.26

(C) 1.0  

(D) 0.5

T.B.C. : 43/13/ET-III

33  
P.T.O.
The daily demand for an item during a single period occurs instantaneously at the start of the period. The distribution of the demand is rectangular between 300 and 400. The unit holding cost of the item during the period is Rs. 3, and the unit penalty cost for running out of stock is Rs. 6. The optimal number of items to be purchased so as to maximize the profit are approximately:

(A) 357  (B) 367  
(C) 377  (D) 387

29. Let $X$ be a complete metric space and let $\{F_n\}$ be a decreasing sequence of non-empty closed subsets of $X$ such that $d(F_n) \to 0$, then $\bigcap_{n=1}^{\infty} F_n$ contains:

(A) exactly one point  (B) no point  
(C) two points  (D) none of these

Or

In a strip plot design two factors A and B with $p$ and $q$ levels respectively are applied to:

(A) larger strips  (B) smaller strips  
(C) split strips  (D) substrips

T.B.C. : 43/13/ET-III

34
अथवा

एक अवधि के दौरान मद के लिए दैनिक मांग, अवधि के एकदम प्रारंभ में ही उत्पन्न होती है। मांग का वितरण 300 और 400 के बीच आयताकार है। अवधि के दौरान मद की युनिट होलिंग लागत 3 रु. है; और स्टॉक कम पड़ जाने की युनिट पैनेल ही लागत 6 रु. है। लाभ को अधिकतम करने के लिए खरीदे जाने वाले मदों की इक्सव घंटी लगभग कितनी होगी?

(A) 357          (B) 367

(C) 377          (D) 387

29. मान लीजिए कि $X$ पूर्ण दौर्वरक समय है और मान लीजिए कि $<F>_{n}$, $X$ के अरिक्त विवृत उपसमुच्चयों का हास्यमान अनुक्रम है ऐसे कि $d(F_{n}) \to 0$ है, तो फिर $\bigcap_{n=1}^{\infty} F_{n}$ में समिलत है:

(A) पूरा एक अंक  (B) कोई अंक नहीं

(C) दो अंक  (D) इनमें से कोई नहीं

अथवा

स्टेप (पटी) प्लाट डिजाइन में A और B दो उपादन, क्रमशः $p$ एवं $q$ स्टेप्स के साथ निम्नलिखित में से किसी अनुप्रयुक्त किये जाते हैं?

(A) ज्यादा बड़ी पटियाँ  (B) ज्यादा छोटी पटियाँ

(C) खंडित पटियाँ  (D) उपपटियाँ
Let \( f \) be a function defined on \([1, 3]\) by:

\[
f(x) = \begin{cases} 
1, & \text{if } x \text{ is rational in } [1, 3] \\
0, & \text{if } x \text{ is irrational in } [1, 3]
\end{cases}
\]

then for any partition \( P \) of \([1, 3]\), \( L(P, f) \) equals:

(A) 1  
(B) 2  
(C) 0  
(D) does not exist

Or

In network analysis, let \( t_{ij} \) represents the duration of an activity \((i, j)\), then:

(A) \( FF_{ij} = EF_j - ES_i - t_{ij} \)  
(B) \( TF = EF_j - LS_i - t_{ij} \)  
(C) \( TF_{ij} = LF_j - ES_i - t_{ij} \)  
(D) \( FF_{ij} = ES_j - EF_i - t_{ij} \)

31. Which of the following is true?

(A) \( l^1 \) is reflexive  
(B) \( l^\infty \) is reflexive  
(C) \( C_0 \) is reflexive  
(D) \( l^4 \) is reflexive
30. मान लीजिए \( f \) फंक्शन है जिसे \([1, 3]\) पर

\[
f(x) = \begin{cases} 
1, & \text{यदि } x \in [1, 3] \text{ में परिमेय है} \\
0, & \text{यदि } x \in [1, 3] \text{ में अपरिमेय है}
\end{cases}
\]

के द्वारा परिभाषित किया है,

तो फिर \([1, 3]\) के किसी भी विभाजन \( P \) के लिए, \( L(P, f) \) किसके बराबर होगा?

(A) 1  (B) 2

(C) 0  (D) विद्यमान नहीं है

अथवा

नेटवर्क विश्लेषण में, मान लीजिए \( t_{ij} \) गतिविधि \((i, j)\) की अवधि निरूपित करता है, तो फिर :

(A) \( FF_{ij} = EF_j - ES_i - t_{ij} \)

(B) \( TF = EF_j - LS_i - t_{ij} \)

(C) \( TF_{ij} = LF_j - ES_i - t_{ij} \)

(D) \( FF_{ij} = ES_j - EF_i - t_{ij} \)

31. निम्नलिखित में से कौनसा सत्य है?

(A) \( l^1 \) स्वतुल्य है  (B) \( l^{\infty} \) स्वतुल्य है

(C) \( C_0 \) स्वतुल्य है  (D) \( l^4 \) स्वतुल्य है
Or

The maximum likelihood estimator of the parameter $\theta$ in the density function:

$$f(x, \theta) = \frac{1}{2} e^{-|x-\theta|}$$

based on a random sample $X_1, X_2, \ldots, X_n$ is:

(A) maximum ($X_1, X_2, \ldots, X_n$)

(B) minimum ($X_1, X_2, \ldots, X_n$)

(C) mean of $X_1, X_2, \ldots, X_n$

(D) median of $X_1, X_2, \ldots, X_n$

32. If $\bar{u}(x, s)$ represents Laplace transform of $u(x, t)$, then the initial value problem:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, -\infty < x < \infty, t > 0$$

$$u(x, 0) = 0, \frac{\partial u(x, 0)}{\partial t} = \sin(\pi x)$$

transforms to:

(A) $\frac{d^2 \bar{u}}{dx^2} + x^2 \bar{u} = \sin(\pi x)$

(B) $\frac{d^2 \bar{u}}{dx^2} + s \bar{u} = \sin(\pi x)$

(C) $\frac{d^2 \bar{u}}{dx^2} - s \bar{u} = -\sin(\pi x)$

(D) $\frac{d^2 \bar{u}}{dx^2} - s^2 \bar{u} = -\sin(\pi x)$

T.B.C.: 43/13/ET - 44
अनुच्छेद

यादृच्छिक प्रतिदर्श \( X_1, X_2, \ldots\ldots\ldots, X_n \) पर आधारित घनत्व फलन

\[
f(x, \theta) = \frac{1}{2} e^{-ix - \theta}
\]

में \( \theta \) का अधिकतम प्राप्ति आकलक है :

(A) अधिकतम \( (X_1, X_2, \ldots\ldots, X_n) \)

(B) न्यूनतम \( (X_1, X_2, \ldots\ldots, X_n) \)

(C) \( X_1, X_2, \ldots\ldots, X_n \) का मध्य

(D) \( X_1, X_2, \ldots\ldots, X_n \) की माध्यमिका

32. यदि \( u(x, t) \) का लाप्लास रूपांतर \( \bar{u}(x, s) \) निरूपित करता है, तो प्रारंभिक मूल्य (या मान) समस्या :

\[
\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \quad t > 0
\]

\[
u(x, 0) = 0, \quad \frac{\partial u(x, 0)}{\partial t} = \sin(\pi x)
\]

निम्नलिखित में रूपांतरित होता है :

(A) \( \frac{d^2 \bar{u}}{dx^2} + x^2 \bar{u} = \sin(\pi x) \)

(B) \( \frac{d^2 \bar{u}}{dx^2} + s \bar{u} = \sin(\pi x) \)

(C) \( \frac{d^2 \bar{u}}{dx^2} - s \bar{u} = -\sin(\pi x) \)

(D) \( \frac{d^2 \bar{u}}{dx^2} - s^2 \bar{u} = -\sin(\pi x) \)
The steady state market share associated with the following brand switching transition probability matrix:

<table>
<thead>
<tr>
<th>Brand</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Y</td>
<td>0.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>

is:

(A) X = 50%, Y = 50%  
(B) X = 70%, Y = 30%  
(C) X = 33.33%, Y = 66.67%  
(D) X = 66.67%, Y = 33.33%

33. The ring \( \mathbb{Z} \) of integers:

(A) has both finite ascending and descending chain conditions  
(B) has finite ascending chain condition but not finite descending chain condition  
(C) is not principal ideal domain  
(D) none of the above

Or

In the split plot experiment, the main factor A and subfactor B are studied in the:

(A) Factorial experiment  
(B) Same experiment  
(C) Two simple experiments  
(D) Latin square design
अथवा

निम्नलिखित ब्रान्ड स्वरूप संक्रमण प्राप्तिका आय्योह : 

<table>
<thead>
<tr>
<th>ब्रान्ड</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Y</td>
<td>0.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>

से सम्बन्धित स्थायी अवस्था बाजार हिस्सा है :

(A) X = 50%, Y = 50%  (B) X = 70%, Y = 30%
(C) X = 33.33%, Y = 66.67%  (D) X = 66.67%, Y = 33.33%

33. पूर्णाकों के बल्य Z में :

(A) परिमित आरोही तथा अवरोही शृंखला प्रतिबंध दोनों हैं
(B) परिमित आरोही शृंखला प्रतिबंध है परन्तु परिमित अवरोही शृंखला प्रतिबंध नहीं है
(C) प्रमुख आदर्श क्षेत्र नहीं है
(D) उपर्युक्त में से कोई नहीं

अथवा

स्प्लिट (खंडित) प्लांट प्रयोग में मुख्य उपादान A और उपउपादान B का अध्ययन किसमें किया जाता है ?

(A) क्रमशुणित प्रयोग  (B) समान उपयोग
(C) दो सरल प्रयोग  (D) लैटिन चर्ग डिजाइन
34. \( A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & a \\ 0 & 0 & 7 \end{bmatrix} \) is:

(A) in Jordan canonical form, when \( a \neq 0 \)

(B) product of eigenvalues of \( A \neq \det A \)

(C) in Jordan canonical form, when \( a = 0 \)

(D) none of the above

Or

If there are only two firms competing in the market for single product, then that situation is called:

(A) Bilateral monopoly

(B) Discriminating monopoly

(C) Duopoly

(D) Oligopoly

35. The initial value problem \( \frac{dy}{dx} = y^3, y(0) = 0 \):

(A) has a unique solution

(B) does not have any solution

(C) has more than one solution

(D) none of the above
34. \[ A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & a \\ 0 & 0 & 7 \end{bmatrix} \]

क्या है?

(A) जब \( a \neq 0 \) है तो जोरदाँ विहित रूप में

(B) \( A \neq \text{सार्वजनिक} \) 
आइडेन्ट (अभिलक्षण) मानों का गुणनफल

(C) जब \( a = 0 \) है तो जोरदाँ विहित रूप में

(D) उपयुक्त में से कोई नहीं

अध्ययन

यदि बाजार में केवल दो फर्में एकल उत्पाद के लिए प्रतिस्पर्धा कर रही हैं, तो यह स्थिति कहलाती है:

(A) द्विपाशृंचक एकाधिकार 
(B) विभेदी या विविक्तकर एकाधिकार

(C) ह्यपाधिकार
(D) अत्यधिकार

35. प्रारम्भिक मान समस्या \( \frac{dy}{dx} = y^2, y(0) = 0 \) का:

(A) अद्वितीय हल है

(B) कोई हल नहीं है

(C) एक से ज्यादा हल है

(D) उपयुक्त में से कोई नहीं
Suppose person A and person B draw random samples of sizes 15 and 20 respectively from \( N(\mu, \sigma^2) \) \( \sigma^2 > 0 \) for testing \( H_0 : \mu = 2 \) against \( H_1 : \mu > 2 \). In both the cases, the observed sample means and observed standard deviations are same with values \( \bar{x}_1 = \bar{x}_2 = 1.8, s_1 = s_2 = s \). Both of them use the usual \( t \)-test and state the \( p \)-values \( p_A \) and \( p_B \) respectively. Then which of the following is correct?

(A) \( p_A = p_B \)  
(B) \( p_A > p_B \)  
(C) \( p_A < p_B \)  
(D) relation between \( p_A \) and \( p_B \) depends on the value of \( s \)

36. For the linear integral equation:

\[
\phi(x) = x + \int_0^{\frac{1}{2}} \phi(\xi) \, d\xi,
\]

the resolvent kernel \( R(x, \xi, 1) \) is:

(A) \( \frac{1}{2} \)  
(B) 2  
(C) \( \frac{3}{2} \)  
(D) 4

T.B.C.: 43/13/ET-\( \frac{1}{4} \)
अथवा

मान लीजिए कि व्यक्ति A और व्यक्ति B, $H_1: \mu > 2$ के विरुद्ध $H_0: \mu = 2$ का परीक्षण करने के लिए $N(\mu, \sigma^2)$, $\sigma^2 > 0$ से क्रमशः 15 और 20 आकारों के यादृच्छिक प्रतिदर्श निकालते हैं। दोनों स्थितियों में, प्रेषित प्रतिदर्श माध्य और प्रेषित मानक विचलन एकसमान हैं और उनके मान $\bar{x}_1 = \bar{x}_2 = 1.8, s_1 = s_2 = s$ हैं। दोनों ही आम $t$-परीक्षण का प्रयोग करते हैं और $p$-मान क्रमशः $p_A$ और $p_B$ बताते हैं तो फिर निम्नलिखित में से कौनसा सही है?

(A) $p_A = p_B$

(B) $p_A > p_B$

(C) $p_A < p_B$

(D) $p_A$ और $p_B$ के बीच सम्बंध $s$ के मान पर निर्भर करता है

36. रैखिक पूर्णांक समीकरण:

$$\phi(x) = x + \int_0^1 \phi(\xi) \, d\xi$$

के लिए साधक अंक $R(x, \xi, 1)$ है:

(A) $\frac{1}{2}$

(B) 2

(C) $\frac{3}{2}$

(D) 4
Which of the following statements is **true** with respect to the elasticity theorem?

(A) If the demand curve is price inelastic, a rise in price will decrease the consumer’s expenditure

(B) If the demand curve is price inelastic, a rise in price will increase the consumer’s expenditure

(C) If the demand curve is price elastic, a rise in price will increase the consumer’s expenditure

(D) If the demand curve is price elastic, a fall in price will decrease the consumer’s expenditure

37. Let $n$ be an integer $> 1$. Then $\tau(n)$ is odd if and only if:

(A) $n$ is a prime number

(B) $n$ is a perfect square

(C) $n$ is not a perfect square

(D) none of these

Or

In a $2^5$ factorial experiment, the key block is taken as:

(1), $bc$, $de$, $bcde$, $abd$, $acd$, $abe$, $ace$.

The confounded effects are:

(A) BCDE and ABD

(B) AB, CD and ABCD

(C) ABE and ACE

(D) DE and ABD

T.B.C. : 43/13/ET-III 46
अध्याय

लोच प्रमेय के सम्बन्ध में निम्नलिखित में से कौनसा कथन सत्य है?

(A) यदि मांग वक्र कीमत बेलोच है, तो कीमत में वृद्धि उपभोक्ता के व्यय में कमी करेगी

(B) यदि मांग वक्र कीमत बेलोच है, तो कीमत में वृद्धि उपभोक्ता के व्यय में वृद्धि करेगी

(C) यदि मांग वक्र कीमत लोचदार है, तो कीमत में वृद्धि उपभोक्ता के व्यय में वृद्धि कर देगी

(D) यदि मांग वक्र कीमत लोचदार है, तो कीमत में गिरावट उपभोक्ता के व्यय को कम करेगी

37. मान लीजिए कि $n$ पूर्णांक $> 1$ है तो फिर $f(n)$ विशेष होगा यदि और केवल यदि:

(A) $n$ अभाज्य संख्या है

(B) $n$ पूर्ण वर्ग है

(C) $n$ यथार्थत्व या पूर्ण वर्ग नहीं है

(D) इनमें से कोई नहीं

अध्याय

$2^5$ क्रमगुणित प्रयोग में, मुख्य ब्लॉक (खंड) को

(1), bc, de, bcde, abd, acd, ahe, ace

के रूप में लिया है तो संकरणित प्रभाव है:

(A) BCDE और ABD

(B) AB, CD और ABCD

(C) ABE और ACE

(D) DE और ABD

T.B.C.: 43/13/ET-III

47

P.T.O.
38. The plane containing $\vec{t}$ and $\vec{n}$ is called:

(A) osculating plane  \hspace{1cm} (B) normal plane

(C) tangent plane  \hspace{1cm} (D) rectifying plane

Or

In a production process, Rs. 50,000 per annum is the machine cost and Rs. 30,000 is the tooling price. The company estimates that raw-material and labour costs for producing 1 unit is Rs. 45, marketing and transportation cost is Rs. 25. Company estimates the relationship between no. of units sold (D) and selling price ($p$) which is given by:

\[ D = 10,000 - 50p; \quad 0 \leq p \leq 20 \]

What is the unit selling price to get maximum profit?

(A) Rs. 135 \hspace{1cm} (B) Rs. 150

(C) Rs. 200 \hspace{1cm} (D) Rs. 100

39. The resolvent kernel of the Volterra integral equation $u(x) = f(x)$

\[ 3 \int_{0}^{x} k(x, t) u(t) \, dt \text{ with } k(x, t) = e^{x-t} \text{ is given by:} \]

(A) $e^{x-t}$ \hspace{1cm} (B) $e^{-(x-t)}$

(C) $e^{2(x-t)}$ \hspace{1cm} (D) $e^{-2(x-t)}$
38. \( t \) और \( n \) से युक्त समतल क्या कहलाता है?

(A) आश्रेष्ट समतल  
(B) सामान्य समतल

(C) स्पर्श समतल  
(D) परिशोधक समतल (रेक्टिफाइंग प्लेन)

अथवा

उत्पादन की प्रक्रिया में, प्रति वर्ष मशीन की लागत 50,000 रु. है और उपकरण (डूलिंग) कीमत 30,000 रु. है। कंपनी का अनुमान है कि एक इकाई का उत्पादन करने के लिए कच्चा माल और श्रम लागतें 45 रु. हैं, विपणन तथा विद्युत लागत 25 रु. हैं। कंपनी बिक्री की गई इकाइयों की संख्या (D) और बिक्री कीमत (p) जो निम्नलिखित के द्वारा दी गई है:

\[ D = 10,000 - 50p; 0 \leq p \leq 20 \]

के बीच सम्बन्ध का अनुमान लगता है। अधिकतम लाभ पाने के लिए प्रति इकाई बिक्री कीमत क्या है?

(A) 135 रु.  
(B) 150 रु.

(C) 200 रु.  
(D) 100 रु.

39. \( k(x, t) = e^{x-t} \) के साथ बॉल्टरा पूर्णक समीकरण \( u(x) = f(x) + 3 \int_0^x k(x, t) u(t) \, dt \) का साधनक अध्यन निम्नलिखित के द्वारा दिया है:

(A) \( e^{x-t} \)  
(B) \( e^{-(x-t)} \)

(C) \( e^{2(x-t)} \)  
(D) \( e^{-2(x-t)} \)

T.B.C. : 43/13/ET-III  
49  
P.T.O.
Suppose that we have a data set consisting of 20 observations, where each value is either 0 or 1. Consider the statements:

(1) The mean of the data can not be larger than the variance
(2) The mean of the data can not be smaller than the variance
(3) The mean being same as the variance implies that the mean is zero
(4) The variance will be 0 if and only if the mean is either 1 or 0

Of the above statements:

(A) only (1) is correct  (B) only (2) is correct
(C) only (2), (3) and (4) are correct  (D) all the four are correct

40. Finite abelian group of order 72 has the possible form:

(A) \( \mathbb{Z}_8 \times \mathbb{Z}_9, \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \)
(B) \( \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_9, \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \)
(C) \( \mathbb{Z}_8 \times \mathbb{Z}_9, \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_9, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9, \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \)

(D) None of the above

Or

The various forms of demand-oriented pricing policy are:

(A) Price discrimination on consumer basis
(B) Price discrimination on time basis
(C) Both (A) and (B)
(D) Either (A) or (B)
अथवा

मान लीजिए हमारे पास 20 प्रश्नों का एक तम्म समुच्चय है, जहाँ प्रत्येक मान या तो 0 है या 1 है। नीचे दिये कथनों पर विचार कीजिए:

(1) एक तम्म का माध्य प्रसरण से बड़ा नहीं हो सकता है
(2) एक तम्म का माध्य प्रसरण से छोटा नहीं हो सकता है
(3) माध्य का, प्रसरण के जितने होने का तात्पर्य है कि माध्य शून्य है
(4) प्रसरण शून्य होगा यदि और सिर्फ यदि माध्य या तो 1 या 0 है

उपर्युक्त कथनों में से:
(A) केवल (1) सही है
(B) केवल (2) सही है
(C) केवल (2), (3) और (4) सही हैं
(D) सभी सही हैं

40. 72 कोटि का परिमित आवेली समूह का संभावित रूप होगा:

(A) $Z_8 \times Z_9$, $Z_8 \times Z_3 \times Z_3$
(B) $Z_4 \times Z_2 \times Z_9$, $Z_4 \times Z_2 \times Z_3 \times Z_3$
(C) $Z_8 \times Z_9$, $Z_2 \times Z_2 \times Z_2 \times Z_2 \times Z_2 \times Z_9$, $Z_8 \times Z_3 \times Z_3$, $Z_4 \times Z_2 \times Z_3 \times Z_3$
(D) उपर्युक्त में से कोई नहीं

अथवा

मांग-उन्मुखी कीमत निर्धारण नीति के विभिन्न रूप हैं:

(A) उपभोक्ता के आधार पर कीमत विभेदीकरण
(B) समय के आधार पर कीमत विभेदीकरण
(C) (A) और (B) दोनों
(D) या तो (A) या (B)
41. The curvature of the cubic curve \( \vec{r} = (u, u^2, u^3) \) is given by:

(A) \[ \frac{4(1 + 9u^2 + 9u^4)}{(1 + 4u^2 + 9u^4)} \]

(B) \[ \frac{2(1 + 9u^2 + 9u^4)^{\frac{1}{2}}}{(1 + 4u^2 + 9u^4)^{\frac{3}{2}}} \]

(C) \[ \frac{4(1 + 4u^2 + 9u^4)}{1 + 9u^2 + 9u^4} \]

(D) \[ \frac{2(1 + 4u^2 + 9u^4)^{\frac{1}{2}}}{1 + 9u^2 + 9u^4} \]

Or

Choose the correct statement:

(A) The goal of revised simplex method is to give a better solution of the problem.

(B) The goal of revised simplex method is the ordering of all calculations so that no unnecessary calculations are performed.

(C) The goal of revised simplex method is to reduce the number of variables.

(D) The approach of the revised simplex method is different from that of the original simplex method.

42. If \( \text{Ch} \ F = 0 \) and \( T^4 = I \), then \( T \):

(A) has repeated roots

(B) is triangular

(C) is not diagonalizable

(D) none of these

Or

Wishart distribution is the multivariate generalization of:

(A) normal distribution

(B) \( \chi^2 \) distribution

(C) \( t \) distribution

(D) \( F \) distribution

T.B.C. : 43/13/ET-III 52
41. घनीय वक्र $r = (u, u^2, u^3)$ की वक्रता निम्नलिखित में से किसके द्वारा दी जायेगी?

(A) $\frac{4(1 + 9u^2 + 9u^4)}{(1 + 4u^2 + 9u^4)}$  
(B) $\frac{2(1 + 9u^2 + 9u^4)^{\frac{1}{2}}}{(1 + 4u^2 + 9u^4)^{3/2}}$

(C) $\frac{4(1 + 4u^2 + 9u^4)}{1 + 9u^2 + 9u^4}$  
(D) $\frac{2(1 + 4u^2 + 9u^4)^{\frac{1}{2}}}{1 + 9u^2 + 9u^4}$

अध्ययनी

सही कथन का प्रयोग कीजिए:

(A) संशोधित एक्षर विधि का वक्रता समस्या का बेहतर हल देना है

(B) संशोधित एक्षर विधि का वक्रता तत्काल परिकल्पना का क्रमशः उपयोग करना है ताकि कोई अनावश्यक परिकल्पना न किया जाए

(C) संशोधित एक्षर विधि का वक्रता चरों की संख्या को घटाता है

(D) संशोधित एक्षर विधि का उपयोग मूल एक्षर विधि के उपयोग से भिन्न है

42. यदि $\text{Ch F} = 0$ है और $T^4 = I$ है, तो $T$:

(A) के पृथक मूल हैं  

(B) त्रिकोणीय है

(C) विकर्णीय नहीं है

(D) इनमें से कोई नहीं

अध्ययनी

विशार्ट चैट किसका बहुचर सामान्यीकरण है?

(A) सामान्य बंटन   

(B) $\chi^2$ बंटन

(C) $t$ बंटन  

(D) $F$ बंटन
43. Euler's forward method for the differential equation \( y' = f(x, y) \) can be written as:

(A) \( y_{i+1} = y_i + hf_{i+1} \)  \hspace{1cm}  (B) \( y_{i+1} = y_{i-1} + 2hf_i \)

(C) \( y_{i+1} = y_i + \frac{h}{2} f_i \)  \hspace{1cm}  (D) \( y_{i+1} = y_i + hf_i \)

Or

If \( r \) is the observed correlation coefficient in a sample of \( n \) pairs of observations from a correlated bivariate normal population, then the statistic:

\[
\frac{1}{2} \log_e \left( \frac{1 + r}{1 - r} \right)
\]

is approximately normal with variance:

(A) \( \frac{1}{n} \)  \hspace{1cm}  (B) \( \frac{1}{n-1} \)

(C) \( \frac{1}{n-2} \)  \hspace{1cm}  (D) \( \frac{1}{n-3} \)

44. The path that minimizes the arc length of the curve between \((x_0, y_0) = (0, 0)\) and \((x_1, y_1) = (1, 1)\) is represented by:

(A) \( y = x \)  \hspace{1cm}  (B) \( y = x^2 \)

(C) \( y = 2x^2 + x \)  \hspace{1cm}  (D) none of these
43. अवकल समीकरण \( y' = f(x, y) \) के लिए ऑयलर अग्र विधि को निम्नलिखित रूप में भी लिखा जा सकता है:

(A) \( y_{i+1} = y_i + h f_{i+1} \)  \quad (B) \( y_{i+1} = y_{i-1} + 2 h f_i \)

(C) \( y_{i+1} = y_i + \frac{h}{2} f_i \)  \quad (D) \( y_{i+1} = y_i + h f_i \)

अध्वा

यदि \( r \), सहसम्बन्धित दिष्ट अन्य सामान्य समिट से लिए \( n \) गुणों के प्रेक्षणों के प्रतिदार्ष में प्रभावित सहसम्बन्ध गुणांक है, तो प्रतिदशरोज़:

\[
\frac{1}{2} \log_e \left( \frac{1+r}{1-r} \right)
\]

किस प्रसरण के साथ लगभग सामान्य होगा?

(A) \( \frac{1}{n} \)  \quad (B) \( \frac{1}{n-1} \)

(C) \( \frac{1}{n-2} \)  \quad (D) \( \frac{1}{n-3} \)

44. \( (x_0, y_0) = (0, 0) \) और \( (x_1, y_1) = (1, 1) \) के बीच वज्र की चाप-लम्बाई को न्यूनतम करने वाला पथ किसके द्वारा निरूपित होता है?

(A) \( y = x \)  \quad (B) \( y = x^2 \)

(C) \( y = 2x^2 + x \)  \quad (D) इनमें से कोई नहीं
In case of sampling from \( N_p(\mu, \Sigma) \), \( \Sigma \) being unknown, the likelihood ratio test of \( H_0 : \mu = \mu_0 \) (specified) is a function of:

(A) Hotelling's \( T^2 \)  
(B) Sample mean vector \( \bar{X} \) only  
(C) Student's \( t \)  
(D) None of these

45. R is a commutative ring:

(A) Every prime ideal of it is a maximal ideal  
(B) \( R \) is not a field if \( R = \mathbb{Z}_2[x]/<1 + x^2> \)  
(C) Every prime ideal of \( R \) is a maximal ideal if \( R = F[x] \) (\( F \) : a field)  
(D) none of the above

Or

Consider the following five observations on \((X, Y)\):

\[(0, 1), (1, 2), (2, 3), (3, 2), (4, 1)\]

and the statements:

(1) the least-square linear regression of \( Y \) on \( X \) is \( Y = \frac{9}{5} \)  
(2) the least-square linear regression of \( X \) on \( Y \) is \( X = 2 \)  
(3) the correlation coefficient between \( X \) and \( Y \) is 0  
(4) the correlation coefficient between \( X \) and \( Y \) is +1

Of the above statements:

(A) Only (1) is correct  
(B) Only (1) and (2) are correct  
(C) Only (1), (2) and (3) are correct  
(D) All the four are correct
अथवा

\(N_p(\mu, \Sigma)\) से प्रतिच्छेद की स्थिति में, जहाँ \(\Sigma\) अज्ञात है, \(H_0: \mu = \mu_0\) (विनिर्दिष्ट) का प्रायिक अनुपात परीक्षण किसका फलन होता है?

(A) होटलिंग का \(T^2\)  
(B) केवल प्रतिदर्श माध्य सदिश \(X\)

(C) विद्यार्थियों का \(t\)  
(D) इनमें से कोई नहीं

45. \(R\) क्रमविनिमेय चलय हैः

(A) उसका प्रत्येक अभाज्य गुणजालवली उच्चिष्ट आदर्श है

(B) यदि \(R = Z_2\{x\}/<1 + x^2>\) है तो \(R\) क्षेत्र नहीं है

(C) यदि \(R = F[x]\) (जहाँ \(F: सेट\) है तो \(R\) का प्रत्येक गुणजालवली उच्चिष्ट आदर्श है

(D) उपयुक्त में से कोई नहीं

अथवा

\((X, Y)\) के निम्नलिखित पाँच प्रश्नों

\((0, 1), (1, 2), (2, 3), (3, 2), (4, 1)\)

पर और कठिनों पर ध्यान दीजिएः

(1) \(X\) पर \(Y\) का न्यूनतम वर्ग रेखिक समांतरण \(Y = \frac{9}{5}\) है

(2) \(Y\) पर \(X\) का न्यूनतम वर्ग रेखिक समांतरण \(X = 2\) है

(3) \(X\) और \(Y\) के बीच सहसम्बन्ध गुणांक 0 है

(4) \(X\) और \(Y\) के बीच सहसम्बन्ध गुणांक +1 है

उपयुक्त कठिनों में सेः

(A) केवल (1) सही है

(B) केवल (1) और (2) सही हैं

(C) केवल (1), (2) और (3) सही हैं

(D) चारों सही हैं
46. In the third quadrant of the $xy$-plane, the characteristic of the differential equation:

$$(1 + \sqrt{xy})u_{xx} + 2\left(\sqrt{1 + y - xy}\right)u_{xy} + (1 - \sqrt{xy})u_{yy} = 0$$

are

(A) Identical  (B) Complex conjugates
(C) Real and positive (D) Real and negative

Or

If $X \sim N_p(\mathbf{0}, \Sigma)$, then the distribution of $X' \Sigma^{-1}X$ is:

(A) Univariate normal  (B) Central $\chi^2$
(C) Multivariate normal (D) Non-central $\chi^2$

47. The total number of generalized coordinates of a particle moving on the surface of a sphere $x^2 + y^2 + z^2 = 100$ is:

(A) 1  (B) 2
(C) 3  (D) 4

Or

Let $X$ be a binomial random variable with parameters $\left(11, \frac{1}{3}\right)$. Consider the following values of $k$:

(1) $k = 2$
(2) $k = 3$
(3) $k = 4$
(4) $k = 5$

At which value(s) of $k$ is $P(X = k)$ maximised?

(A) only at $k = 2$  (B) only at $k = 3$ and $k = 4$
(C) only at $k = 2$ and $k_4$  (D) only at $k = 5$
46. \(xy\)-समतल के तृतीय चतुर्थांश में, अवकल समीकरण

\[
\left(1 + \sqrt{xy}\right)u_{xx} + 2\left(\sqrt{1 + y - xy}\right)u_{xy} + \left(1 - \sqrt{xy}\right)u_{yy} = 0
\]
की विशेषता है:

(A) तदरूप 
(B) सम्मिश्र संयुग 
(C) वास्तविक तथा धनात्मक 
(D) वास्तविक तथा ऋणात्मक

अथवा

यदि \(X - N_p(0, \Sigma)\) है, तो फिर \(X' \Sigma^{-1} X\) का बंतन होगा:

(A) एकविचर प्रसामान्य 
(B) केन्द्रीय \(\chi^2\) 
(C) बहुचर प्रसामान्य 
(D) अकेली \(\chi^2\)

47. गोलक (स्फेर) \(x^2 + y^2 + z^2 = 100\) के धारातल पर गतिमान कण के सामान्यीकृत निर्देशांकों की कुल संख्या है:

(A) 1 
(B) 2 
(C) 3 
(D) 4

अथवा

मान लीजिए कि \(X, \left[11, \frac{1}{3}\right]\) प्रार्थन के साथ हिपैड यादृच्छिक चर है। \(k\) के निम्नलिखित मानों:

(1) \(k = 2\)
(2) \(k = 3\)
(3) \(k = 4\)
(4) \(k = 5\)

पर विचार कीजिए और बताइए कि \(k\) के किस मान पर \(P(X = k)\) अधिकतम होता है?

(A) केवल \(k = 2\) पर 
(B) केवल \(k = 3\) और \(k = 4\) पर 
(C) केवल \(k = 2\) और \(k = 4\) पर 
(D) केवल \(k = 5\) पर

T.B.C. : 43/13/ET-III

59

P.T.O.
48. If \( f(z) \) is a non-constant polynomial, then there exists a complex number \( a \) such that:

(A) \( f(a) > 0 \)  
(B) \( f(a) < 0 \)  
(C) \( f(a) = 0 \)  
(D) \( f(a) \neq 0 \)

Or

Let \( X_\alpha (\alpha = 1, 2, ..., N) \) be \( N \) independent observations from \( N_p(\mu, \Sigma) \), \( \bar{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_\alpha \), and let \( Z_\alpha (\alpha = 1, 2, ..., N) \) be i.i.d. variates distributed according to \( N_p(0, \Sigma) \). Then an unbiased estimator for \( \Sigma \) is given by:

(A) \( \frac{1}{N} \sum_{\alpha=1}^{N} (X_\alpha - \bar{X})(X_\alpha - \bar{X})' \)  
(B) \( \frac{1}{N} \sum_{\alpha=1}^{N} Z_\alpha Z_\alpha' \)  
(C) \( \frac{1}{N-1} \sum_{\alpha=1}^{N} (X_\alpha - \bar{X})(X_\alpha - \bar{X})' \)  
(D) \( \frac{1}{N-1} \sum_{\alpha=1}^{N} Z_\alpha Z_\alpha' \)

49. The value of the integral

\[
\iint_S x \, dydz + y \, dzdx + z \, dxdy,
\]

where \( S \) is the outer surface of the part of ellipsoid \( \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \) lying above \( xy \)-plane is:

(A) \( 4\pi \, abc \)  
(B) \( 2\pi \, abc \)  
(C) \( \pi \, abc \)  
(D) \( \frac{\pi}{2} \, abc \)

T.B.C.: 43/13/ET-III.
48. यदि $f(z)$ अचरज बहुपद है, तो फिर सम्मिश्र संख्या विद्वान होती है, ऐसे कि:

(A) $f(a) > 0$  
(B) $f(a) < 0$
(C) $f(a) = 0$  
(D) $f(a) 
eq 0$

अर्थात

मान लें जिसके $X_a (\alpha = 1, 2, \ldots, N), N_p (\mu, \Sigma)$, $\bar{X} = \frac{1}{N} \sum_{\alpha=1}^{N} X_a$ से स्वतन्त्र प्रेषण हैं और मान लें जिसके $Z_a (\alpha = 1, 2, \ldots, N), N_p (0, \Sigma)$ के अनुसार बंटी i.i.d. विषय हैं। फिर से अन्तिमः आकारलेखन निम्नलिखित के द्वारा दिया जाएगा:

(A) $\frac{1}{N} \sum_{\alpha=1}^{N} (X_a - \bar{X})(X_a - \bar{X})'$
(B) $\frac{1}{N} \sum_{\alpha=1}^{N} Z_a Z_a'$
(C) $\frac{1}{N-1} \sum_{\alpha=1}^{N} (X_a - \bar{X})(X_a - \bar{X})'$
(D) $\frac{1}{N-1} \sum_{\alpha=1}^{N} Z_a Z_a'$

49. समाकल

$$\iint_S x \, dydz + y \, dzdx + z \, dxdy$$

जहाँ $S$, $xy$-राशिय पर पड़े दीर्घवृत्त $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ के भाग का बाह्य पृष्ठ है, का मान है:

(A) $4\pi abc$  
(B) $2\pi abc$
(C) $\pi abc$  
(D) $\frac{\pi}{2} abc$

T.B.C.: 43/13/ET... 61 P.T.O.
A single observation $X$ is drawn from the p.d.f.:

$$f(x, 0) = \theta e^{-\theta x}, \ x > 0$$

to test the hypothesis $H_0 : \theta = 2$ against $H_1 : \theta = 1$. If the critical region is $X \geq 1$, then the value of power is:

(A) 1 \hspace{1cm} (B) $e^{-1}$
(C) $e$ \hspace{1cm} (D) $e^2$

50. Let $f$ and $g$ are analytic on a region $G$. Then $f = g$ if and only if:

(A) $\{z \in G : f(z) > g(z)\}$ has a limit point in $G$
(B) $\{z \in G : f(z) = g(z)\}$ has a limit point in $G$
(C) $\{z \in G : f(z) < g(z)\}$ has a limit point in $G$
(D) $\{z \in G : f(z) \neq g(z)\}$ has a limit point in $G$

Or

Under PPSWR scheme, an unbiased estimator $t_n$ for population mean $\bar{y}_N$ is:

(A) $t_n = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{p_i}$ \hspace{1cm} (B) $t_n = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{Np_i}$
(C) $t_n = \frac{1}{n} \sum_{i=1}^{n} y_i p_i$ \hspace{1cm} (D) $t_n = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i p_i}{N}$

51. The stream function for a two-dimensional flow field is given by $\psi = xy$. The flow is:

(A) Laminar \hspace{1cm} (B) Uniform
(C) Irrotational \hspace{1cm} (D) Rotational
अथवा

\[ H_1 : \theta = 1 \text{ के विरुद्ध } H_0 : \theta = 2 \text{ परिकल्पना का परीक्षण करने के लिए एक प्रेषण } X \]

को p.d.f.:

\[ f(x, \theta) = \theta e^{-\theta x}, \quad x > 0 \]

से लिया गया है। यदि क्रान्तिक क्षेत्र \( X \geq 1 \) है, तो घात का मान है:

(A) 1 \quad (B) \ e^{-1} \quad (C) \ e \quad (D) \ e^2

50. मान लीजिए कि \( f \) और \( g \), क्षेत्र \( G \) पर विरलेखित है, तो फिर \( f = g \) होगा यदि और केवल यदि:

(A) \( \{z \in G : f(z) > g(z)\} \) \( G \) में एक सीमा बिंदु है

(B) \( \{z \in G : f(z) = g(z)\} \) \( G \) में एक सीमा बिंदु है

(C) \( \{z \in G : f(z) < g(z)\} \) \( G \) में एक सीमा बिंदु है

(D) \( \{z \in G : f(z) \neq g(z)\} \) \( G \) में एक सीमा बिंदु है

अथवा

PPSWR स्कीम के अन्तर्गत, समस्त माध्य \( \bar{y}_N \) के लिए अन्वेषित आकलक \( t_n \) है:

(A) \( t_n = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{p_i} \)

(B) \( t_n = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{Np_i} \)

(C) \( t_n = \frac{1}{n} \sum_{i=1}^{n} y_i p_i \)

(D) \( t_n = \frac{1}{n} \sum_{i=1}^{n} \frac{y_ip_i}{N} \)

51. द्विआयामी प्रवाह क्षेत्र के लिए धारा फलन, \( \psi = xy \) के द्वारा दिया गया है तो फिर प्रवाह अवमो 

(A) पटलीय

(B) एकसमान

(C) असतत्वीय

(D) घूमो 

T.B.C : 43/13/ET-III

63

P.T.O.
Suppose $X_1, X_2, \ldots, X_{10}$ is a random sample from $N(\theta, \sigma^2)$, $\sigma^2 = 10$.

Consider the prior for $\theta$,

$$\theta \sim N(0, \tau^2), \tau^2 = 20$$

Let \[ \bar{X} = \frac{1}{10} \sum_{i=1}^{10} X_i \]

and consider the following statements:

1. \[ \hat{\theta} = \bar{X} \]
2. \[ \hat{\theta} = \frac{20\bar{X}}{21} \]
3. \[ \hat{\theta} \leq \bar{X} \text{ if } \bar{X} \geq 0 \]
4. \[ \hat{\theta} \geq \bar{X} \text{ if } \bar{X} \leq 0 \]

Of the above statements:

A. only (1) is correct
B. only (2) is correct
C. only (2), (3) and (4) are correct
D. All the four are correct

52. The symmetric group $S_n$:

A. solvable if $n \geq 9$
B. solvable if $n \leq 4$
C. has a non-simple group $A_n$, $n \geq 5$
D. none of the above

T.B.C. : 43/13/ET-III.
अध्ययन

मान लीजिए \( X_1, X_2, \ldots, X_{10}, N(\theta, \sigma^2), \sigma^2 = 10 \) से लिया यादृच्छिक प्रतिद्वंद्व घर छोटी है।

\( \theta \) के लिए पूर्व \( \theta \sim N(0, \tau^2), \tau^2 = 20 \) पर ध्यान दें। मान लीजिए कि \( \bar{X} = \frac{1}{10} \sum_{i=1}^{10} X_i \) है और निम्नलिखित कथनों पर ध्यान दियें:

(1) \[ \hat{\theta} = \bar{X} \]

(2) \[ \hat{\theta} = \frac{20\bar{X}}{21} \]

(3) \[ \hat{\theta} \leq \bar{X} \] यदि \( \bar{X} \) गूढ़ है

(4) \[ \hat{\theta} \geq \bar{X} \] यदि \( \bar{X} \) न्यून है

उपर्युक्त कथनों में से:

(A) केवल (1) सही है

(B) केवल (2) सही है

(C) केवल (2), (3) और (4) सही हैं

(D) चारों सही हैं

52. सममित समूह \( S_n \):

(A) साधारण है यदि \( n \geq 9 \) है

(B) साधारण है यदि \( n \leq 4 \) है

(C) इसका अर्थ समूह \( A_n, n \geq 5 \) है

(D) उपर्युक्त में से कोई नहीं

T.B.C. : 43/13/ET-III. 65  P.T.O.
In general, the most efficient method of estimation to estimate population mean using auxiliary information is:

(A) Ratio method of estimation

(B) Regression method of estimation

(C) Product method of estimation

(D) None of the above

53. The integral \( \int_0^\infty \frac{\sin x}{x} \, dx \):

(A) does not converge

(B) converges but not absolutely

(C) converges absolutely

(D) none of these

Or

The critical value for testing \( H_0 : \theta = \theta_0 \) against \( H_1 : \theta > \theta_0 \) at \( \alpha \) level of significance in a normal population \( N(\theta, 1) \) is \( C_1 \). If the level of significance is halved, the critical value becomes \( C_2 \). Which one of the following statements is true for \( C_1 \) and \( C_2 \)?

(A) \( C_1 > C_2 \)

(B) \( C_1 < C_2 \)

(C) \( C_1 = C_2 \)

(D) nothing definite can be said

T.B.C.: 43/13/ET - II - 66
अध्ययनार्थक, सहायक सूचना का उपयोग करते हुए समिश्र माध्य का आकलन करने के लिए सर्वाधिक दक्ष आकलन विधि है:

(A) आकलन की अनुपात विधि

(B) आकलन की समान्तर विधि

(C) आकलन की गुणनफल (प्रोडक्ट) विधि

(D) उपयुक्त में से कोई नहीं

53. पूर्णाक \( \int_{0}^{1} \frac{\sin x}{x} \, dx \):

(A) अभिसारित नहीं होता है

(B) अभिसारित होता है परन्तु पूर्णाक नहीं

(C) पूर्णाक अभिसारित होता है

(D) उपयुक्त में से कोई नहीं

अध्ययन

सामान्य समिश्र: \( N(\theta, 1) \) में \( H_0 : \theta = \theta_0 \) का \( H_1 : \theta > \theta_0 \) के विरुद्ध साधारणता के \( \alpha \) स्तर पर परीक्षण करने के लिए क्रांतिक मान \( C_1 \) है। यदि साधारणता का स्तर आधा कर दें, तो क्रांतिक मान \( C_2 \) हो जाता है। \( C_1 \) और \( C_2 \) के लिए निम्नलिखित कथनों में से कौनसा सत्य है?

(A) \( C_1 > C_2 \)

(B) \( C_1 < C_2 \)

(C) \( C_1 = C_2 \)

(D) कुछ निश्चित नहीं कहा जा सकता है
54. The initial value problem:

\[
\frac{d^2 y}{dx^2} + y = 0, \quad x > 0
\]

\[y(0) = 1, \quad y'(0) = 0\]

is equivalent to the Volterra integral equation:

(A) \[y(x) = 1 + \int_0^x (t - x) y(t)\,dt\]

(B) \[y(x) = 1 + \int_0^x (t + x) y(t)\,dt\]

(C) \[y(x) = 1 + \int_0^x xt \, y(t)\,dt\]

(D) \[y(x) = 1 + \int_0^x (x - t) \, y(t)\,dt\]

Or

In cluster sampling, the sampling variance of sample mean is:

(A) \[\text{Var}(\bar{y}_n) = \frac{N - n}{nN} S_b^2\]

(B) \[\text{Var}(\bar{y}_n) = \frac{N - n}{nN} S_a^2\]

(C) \[\text{Var}(\bar{y}_n) = \frac{n - N}{nN} S_b^2\]

(D) \[\text{Var}(\bar{y}_n) = \frac{N - n}{nN} S^2\]

55. \[A = \begin{bmatrix} -3 & 5 \\ -2 & 4 \end{bmatrix}\] with characteristic roots \(\lambda_1\) and \(\lambda_2\):

(A) \(\lambda_1 = -1, \quad \lambda_2 = 3\)

(B) \(\lambda_1 \lambda_2 \neq \det A\)

(C) \(\lambda_1 = -1, \quad \lambda_2 = 2\)

(D) none of these
प्रारंभिक मान समस्या

\[
\frac{d^2 y}{dx^2} + y = 0, \ x > 0
\]

\[y(0) = 1, \ y'(0) = 0\]

चौल्टेस समाकल समीकरण के तुल्य हैं:

(A) \[y(x) = 1 + \int_0^x (t - x) y(t) dt\]
(B) \[y(x) = 1 + \int_0^x (t + x) y(t) dt\]

(C) \[y(x) = 1 + \int_0^x xt y(t) dt\]
(D) \[y(x) = 1 + \int_0^x (x - t) y(t) dt\]

अध्वां

गुण्ड प्रतिच्छय में, प्रतिनिधि भाषा का प्रतिच्छय प्रसरण है:

(A) \[\text{Var}(\bar{y}_n) = \frac{N-n}{nN} S_b^2\]
(B) \[\text{Var}(\bar{y}_n) = \frac{N-n}{nN} \bar{S}_a^2\]

(C) \[\text{Var}(\bar{y}_n) = \frac{n-N}{nN} S_b^2\]
(D) \[\text{Var}(\bar{y}_n) = \frac{N-n}{nN} S^2\]

55. \[A = \begin{bmatrix} -3 & 5 \\ -2 & 4 \end{bmatrix}\] अभिलक्षणक मूलों \(\lambda_1\) और \(\lambda_2\) के साथ:

(A) \(\lambda_1 = -1, \lambda_2 = 3\)
(B) \(\lambda_1 \lambda_2 \neq \det A\)

(C) \(\lambda_1 = -1, \lambda_2 = 2\)
(D) इनमें से कोई नहीं
Let \( X_1, X_2, \ldots, X_{25} \) be i.i.d. observations from a uniform distribution on the interval \( \left[ \theta - \frac{1}{2}, \theta + \frac{1}{2} \right] \) where \( -\infty < \theta < \infty \) is an unknown parameter.

Consider the following statements:

1. sample mean is an unbiased estimate for \( \theta \)
2. sample median is an unbiased estimate for \( \theta \)
3. sample mean is not the uniformly minimum variance unbiased estimate for \( \theta \)
4. sample median is not the uniformly minimum variance unbiased estimate for \( \theta \)

Of the above:

A) only (1) is correct
B) only (2) is correct
C) only (1), (3) and (4) are correct
D) all the four are correct

56. The extremal of the integral

\[
\int_0^\frac{\pi}{2} \left( y'^2 - y^2 \right) dx, \quad y(0) = 0, \quad y\left( \frac{\pi}{2} \right) = 1
\]

is:

A) \( \sin x + \cos x \)
B) \( \sin x - \cos x \)
C) \( \cos x \)
D) \( \sin x \)


70
अथवा

मान लीजिए कि \( X_1, X_2, \ldots, X_{25} \) अंतराल \( \left[ \theta - \frac{1}{2}, \theta + \frac{1}{2} \right] \) पर समय के बंटन से i.i.d. प्राप्त हैं, जहाँ \(-\infty < \theta < \infty\) अज्ञात प्राप्त है।

निम्नलिखित कथनों पर ध्यान दीजिए:

(1) प्रतिद्वंद्व माध्य \( \theta \) के लिए अनिवार्य आकलन है

(2) प्रतिद्वंद्व माध्यमिका \( \theta \) के लिए अनिवार्य आकलन है

(3) प्रतिद्वंद्व माध्य \( \theta \) के लिए एकसामान न्यूनतम प्रसरण अनिवार्यता आकलन नहीं है

(4) प्रतिद्वंद्व माध्यमिका \( \theta \) के लिए एकसामान न्यूनतम प्रसरण अनिवार्यता आकलन नहीं है

उपर्यक्त में से:

(A) केवल (1) सही है

(B) केवल (2) सही है

(C) केवल (1), (3) और (4) सही हैं

(D) चारों सही हैं

56. समाकल:

\[
\int_0^{\frac{\pi}{2}} (y^2 - y^2) \, dx, \quad y(0) = 0, \quad y\left(\frac{\pi}{2}\right) = 1
\]

का चरम है:

(A) \( \sin x + \cos x \)

(B) \( \sin x - \cos x \)

(C) \( \cos x \)

(D) \( \sin x \)

T.B.C.: 43/13/ET-IV

71

P.T.O.
Non-sampling errors occur in:

(A) Sample survey  (B) Complete enumeration
(C) Systematic sampling  (D) Both in (A) and (B)

57. Let $n$ be any integer $> 2$. Then $\phi(n)$ is:

(A) an odd number  (B) an even number
(C) a prime number $p \neq 2$  (D) 0

Or

In a clinical trial $n$ randomly chosen persons were enrolled to examine whether two different skin creams, E and F, have different effects on the human body. Cream E was applied to one of the randomly chosen arms of each persons, cream F to the other arm. Assume that the response measures is a continuous variable. The appropriate statistical test to be used to examine the difference is:

(A) Two-sample t-test if normality can be assumed
(B) Paired t-test if normality can be assumed
(C) Two-sample Kolmogorov-Smirnov test
(D) Test for randomness
अथवा

अप्रतिचयन जटियाँ किसमें होती हैं?

(A) प्रतिदर्श सर्वेक्षण  (B) पूर्ण गणना
(C) क्रमवाद अप्रतिचयन  (D) (A) और (B) दोनों में

57. मान लीजिए कि \( n \) कोई भी पूर्णांक > 2 है तो फिर \( \phi(n) \) है:

(A) विषम संख्या  (B) सम संख्या
(C) अभाज्य संख्या \( p \neq 2 \)  (D) 0

अथवा

रोग विषयक परीक्षण में, यादृच्छिक रूप से चयनित \( n \) व्यक्तियों को यह जाँचने के लिए नामांकित किया गया कि क्या दो भिन्न प्रकार की क्रीम, E और F का मानव देह पर भिन्न प्रभाव पड़ता है। क्रीम E को प्रत्येक व्यक्ति की यादृच्छिक रूप से चयनित बाह्य पर, और क्रीम F को दूसरी बाह्य पर लगाया गया। अन्तर की जाँच करने के लिए कौनसे उपयुक्त सांख्यिकीय परीक्षण का उपयोग किया जायेगा?

(A) दो-प्रतिदर्श \( t \)-परीक्षण यदि प्रसामान्यता की कल्पना की जा सकती है
(B) सुप्रीम \( t \)-परीक्षण यदि प्रसामान्यता की कल्पना की जा सकती है
(C) दो प्रतिदर्श कोल्मोगोरोव-स्मिरोव परीक्षण
(D) यादृच्छिकता का परीक्षण
58. A group of order 100 has:
(A) a normal subgroup of order 25
(B) the number of normal subgroup of order 25 is 4
(C) no sylow 2-subgroup
(D) none of the above

Or

The probability $p_n$, that $n$ services occurred out of $N$ in time $t$ (Pure death model) with inter-departure time exponentially distributed with mean $\mu$, is:

(A) $p_n = \frac{(\mu t)^{N-n} e^{-\mu t}}{(N-n)!}, 0 < n < N$

(B) $p_n = \frac{(\mu t)^N e^{-\mu t}}{N!}$

(C) $p_n = \frac{(\mu t)^N e^{-\mu t}}{n!}$

(D) None of these

59. The joint pdf of two-dimensional random variable $(X, Y)$ is given by:

$$f(x, y) = \begin{cases} 
\frac{8}{9} xy, & 1 \leq x \leq y \leq 2 \\
0, & \text{elsewhere}
\end{cases}$$

Then the marginal pdf of $Y$ is:

(A) $h(y) = \begin{cases} 
\frac{1}{9} y(y^2 - 1), & 1 \leq y \leq 2 \\
0, & \text{elsewhere}
\end{cases}$

(B) $h(y) = \begin{cases} 
\frac{2}{9} y(y^2 - 1), & 1 \leq y \leq 2 \\
0, & \text{elsewhere}
\end{cases}$

(C) $h(y) = \begin{cases} 
\frac{4}{9} y(y^2 - 1), & 1 \leq y \leq 2 \\
0, & \text{elsewhere}
\end{cases}$

(D) None of these

T.B.C. : 43/13/ET-III
58. क्रमांक 100 के समूह का:
(A) क्रमांक 25 का सामान्य उपसमूह होता है
(B) क्रमांक 25 के सामान्य उपसमूहों की संख्या 4 है
(C) कोई सिलो 2-उपसमूह नहीं
(D) उपयुक्त में से कोई नहीं

अथवा

प्रायिकता $p_n$, कि जब $N$ में से $t$ समय (शुद्ध मूल्य मॉडल) में $n$ सेवाएं (सर्विसिंग) हुई जहाँ
अंत: अपगामिता समय माझ्या $\mu$ के साथ चरघातांकी रूप से वितरित है, होगी:

(A) $p_n = \frac{(\mu t)^{N-n} e^{-\mu t}}{(N-n)!}, 0 < n < N$
(B) $p_n = \frac{(\mu t)^N e^{-\mu t}}{N!}$

(C) $p_n = \frac{(\mu t)^N e^{-\mu t}}{n!}$
(D) इनमें से कोई नहीं

59. द्विआयामी यादृच्छिक चर (X, Y) को ज्वाइंड pdf

$$f(x, y) = \begin{cases} 
\frac{8}{9} xy, & 1 \leq x \leq y \leq 2 \\
0, & \text{elsewhere} 
\end{cases}$$

द्वारा दिया जाता है तो Y का सीमांत pdf होगा:

(A) $h(y) = \begin{cases} 
\frac{1}{9} y(y^2 - 1), & 1 \leq y \leq 2 \\
0, & \text{elsewhere} 
\end{cases}$
(B) $h(y) = \begin{cases} 
\frac{2}{9} y(y^2 - 1), & 1 \leq y \leq 2 \\
0, & \text{elsewhere} 
\end{cases}$

(C) $h(y) = \begin{cases} 
\frac{4}{9} y(y^2 - 1), & 1 \leq y \leq 2 \\
0, & \text{elsewhere} 
\end{cases}$
(D) इनमें से कोई नहीं
A box contains N tickets which are numbered 1, 2, ................., N. The value of N is, however, unknown. A simple random sample of n tickets is drawn without replacement from the box. Let \( X_1, X_2, \ldots, X_n \) be numbers on the tickets obtained in the 1st, 2nd, ..........., nth draws respectively. Which of the following is an unbiased estimator of N?

(A) \( 2\bar{X} - 1 \) where \( \bar{X} = \frac{1}{n}(X_1 + X_2 + \ldots + X_n) \)

(B) \( 2\bar{X} + 1 \)

(C) \( 2\bar{X} + \frac{1}{2} \)

(D) \( 2\bar{X} - \frac{1}{2} \)

60. Laplace transform of \( \sinh 2t \) is:

(A) \( \frac{2}{s^2 - 4} \) 

(B) \( \frac{s}{s^2 - 4} \) 

(C) \( \frac{s}{s^2 + 4} \) 

(D) \( \frac{2}{s^2 + 4} \)

Or

The one step transition probability matrix \( P \) of a Markov chain, whose state space is \([0, 1]\), is:

\[
P = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
0 & 1
\end{bmatrix}
\]

If \( P[X_0 = 0] = \frac{1}{3} \), then \( E(X_2) \) is:

(A) \( \frac{1}{12} \) 

(B) \( \frac{1}{4} \) 

(C) \( \frac{1}{3} \) 

(D) \( \frac{1}{2} \)
अथवा
एक बॉक्स में \( N \) टिकटें हैं जिन्हें 1, 2, ............., \( N \) की संख्या दी गई है। तथापि, \( N \) का मूल्य ज्ञात नहीं है तो \( n \) टिकटों का एक सरल यादृच्छिक प्रतिदर्श, बॉक्स से प्रतिस्थापन के बगैर, निकाला जाता है। मान लीजिए कि 1ला, 2सा, ............., \( n \) वें छाँटा में प्राप्त टिकटों पर क्रमानुसार: \( X_1, X_2, ............., X_n \) की संख्या है। \( N \) का अनभिन्न आकलन निम्नलिखित में से कौनसा है?

(A) \( 2\bar{X} - 1 \) जहाँ \( \bar{X} = \frac{1}{n}(X_1 + X_2 + ............. + X_n) \)
(B) \( 2\bar{X} + 1 \)
(C) \( 2\bar{X} + \frac{1}{2} \)
(D) \( 2\bar{X} - \frac{1}{2} \)

60. \( \sinh 2t \) का लाप्लास रूपान्तर है:

(A) \( \frac{2}{s^2 - 4} \)
(B) \( \frac{s}{s^2 - 4} \)
(C) \( \frac{s}{s^2 + 4} \)
(D) \( \frac{2}{s^2 + 4} \)

अथवा
मार्कोव शृंखला का एक सोपान संक्रमण प्रायिकता आव्यूह \( P \), जिसकी अवस्था समस्ति \( \{0, 1\} \) है, निम्नलिखित है:

\[
P = \begin{bmatrix}
1 & 1 \\
2 & 2 \\
0 & 1
\end{bmatrix}
\]

जहाँ \( P[X_0 = 0] = \frac{1}{3} \) है, तो फिर \( E(X_2) \) होगा:

(A) \( \frac{1}{12} \)
(B) \( \frac{1}{4} \)
(C) \( \frac{1}{3} \)
(D) \( \frac{1}{2} \)

T.B.C.: 43/13/ET - III. 77 P.T.O.
61. \( Z[x] \) is:

(A) a U.F.D., but neither a PID nor a Euclidean, Domain

(B) a PID, but neither a U.F.D., nor a Euclidean, Domain

(C) a Euclidean, Domain, but neither a PID nor a U.F.D.

(D) a U.F.D., a PID and a Euclidean, Domain

Or

Which of the following conditions imply independence of the random variables \( X \) and \( Y \)?

(1) \( P(X > a | Y > b) = P(X > a) \) for all \( a \in \mathbb{R} \)

(2) \( P(X > a | Y < b) = P(X > a) \) for all \( a, b \in \mathbb{R} \)

(3) \( X \) and \( Y \) are uncorrelated

(4) \( E[(X - a)(Y - b)] = E(X - a)E(Y - b) \) for all \( a, b \in \mathbb{R} \)

(A) only (1)  

(B) only (1) and (2)  

(C) only (1), (2) and (4)  

(D) All the four conditions

62. Let \( A \) be any set such that \( m^*A = 0 \) and let \( B \) be any set. Then:

(A) \( m^*(A \cup B) > m^*B \)

(B) \( m^*(A \cup B) < m^*B \)

(C) \( m^*(A \cup B) \neq m^*B \)

(D) \( m^*(A \cup B) = m^*B \)

Or

The customers of a newspaper arrive according to a Poisson process with rate \( \lambda = 2 \) per minute. Given that there has been exactly one customer in the interval \([t_0 - 1, t_0 + 1]\), the probability that at least one customer arrives in the interval \((t_0, t_0 + 2)\) is:

(A) \( \frac{e^{-2}}{2} \)

(B) \( e^{-2} \)

(C) \( \frac{1 - e^{-2}}{2} \)

(D) \( 1 - e^{-2} \)
61. \( Z[x] \) है:
(A) एक U.F.D., लेकिन न तो PID और न यूक्लीडियन डोमेन
(B) एक PID, लेकिन न तो U.F.D. और न यूक्लीडियन डोमेन
(C) एक यूक्लीडियन, डोमेन, लेकिन न तो PID और न U.F.D.
(D) एक U.F.D., एक PID और एक यूक्लीडियन डोमेन

अथवा

निम्नलिखित में से कौनसे प्रतिबंधों का तात्पर्य यादृच्छिक चरों \( X \) और \( Y \) की अनाश्चितता या स्वतंत्रता है?

(1) \( P(X > a \mid Y > b) = P(X > a) \) सभी \( a \in \mathbb{R} \) के लिए
(2) \( P(X > a \mid Y < b) = P(X > a) \) सभी \( a, b \in \mathbb{R} \) के लिए
(3) \( X \) और \( Y \) असहसम्बन्ध हैं
(4) \( E[(X - a) (Y - b)] = E(X - a) E(Y - b) \) सभी \( a, b \in \mathbb{R} \) के लिए

(A) केवल (1)
(B) केवल (1) और (2)
(C) केवल (1), (2) और (4)
(D) चारों प्रतिबंध

62. मान लीजिए \( A \) कोई समुच्चय है ऐसे कि \( m^*A = 0 \) है और मान लीजिए \( B \) कोई समुच्चय है तो फिर:

(A) \( m^*(A \cup B) > m^*B \)
(B) \( m^*(A \cup B) < m^*B \)
(C) \( m^*(A \cup B) = m^*B \)
(D) \( m^*(A \cup B) = m^*B \)

अथवा

समाचार-पत्र के ग्राहक घण्डों प्रक्रिया के अनुसार प्रति मिनट \( \lambda = 2 \) की दर से आते हैं। यह निर्दिष्ट होने पर \( [t_0 - 1, t_0 + 1] \) अंतराल में ठीक एक ग्राहक होता है, यह प्रायिकता कि \( (t_0, t_0 + 2) \) अंतराल में कम से कम एक ग्राहक आता है, है:

(A) \( \frac{e^{-2}}{2} \)
(B) \( e^{-2} \)
(C) \( \frac{1 - e^{-2}}{2} \)
(D) \( 1 - e^{-2} \)

T.B.C. : 43/13/ET-III 79 P.T.O.
Let $X$ be a normed linear space such that every absolutely convergent series in $X$ converges. Then:

(A) $X$ is a Banach space  
(B) $X = C_{00}$

(C) $X$ is not a Banach space  
(D) none of these

Or

Consider the following $2 \times 2$ table of frequencies of voter preferences to two parties classified by gender, in an election:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Party A</th>
<th>Party B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malé</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Female</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>700</td>
<td>1000</td>
</tr>
</tbody>
</table>

Identify the correct statement:

(A) If there is no association between party and gender, the expected frequencies are:

180  
420  
120  
280

(B) The Chi-square statistic for testing no association is 0

(C) Gender and party are not associated

(D) Both males and females equally prefer party B
63. मान लीजिए कि X मानकृत रैक्षिक समस्ति है ऐसे कि X में प्रत्येक पूर्णत्त्व अभिसारी श्रेणी अभिसारित होती है तो फिर :

(A) X बानाख समस्ति है  \hspace{1cm} (B) X = C_{00} \\
(C) X बानाख समस्ति नहीं है  \hspace{1cm} (D) इनमें से कोई नहीं \\

अन्तर्भाषता

निम्नलिखित 2 x 2 तालिका पर विचार कीजिए। इसमें, एक चुनाव में जेंडर द्वारा वर्गीकृत दो दलों के लिए मतदाता की पसंद या वरीयता की आवृत्तियों की व्युत्पित हैं:

<table>
<thead>
<tr>
<th>जेंडर</th>
<th>दल A</th>
<th>दल B</th>
<th>कुल</th>
</tr>
</thead>
<tbody>
<tr>
<td>पुरुष</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>महिला</td>
<td>100</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>कुल</td>
<td>300</td>
<td>700</td>
<td>1000</td>
</tr>
</tbody>
</table>

सही कथन की पहचान कीजिए:

(A) यदि दल तथा जेंडर के बीच कोई साहचर्य नहीं है, तो प्रत्याशित आवृत्तियाँ हैं:

<table>
<thead>
<tr>
<th></th>
<th>180</th>
<th>420</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120</td>
<td>280</td>
</tr>
</tbody>
</table>

(B) कोई साहचर्य नहीं है, का परीक्षण करने के लिए काई स्क्वैशर प्रतिदर्शि 0 है

(C) जेंडर और दल के बीच साहचर्य नहीं है

(D) पुरुष और महिलाएं दोनों दल B को वरीयता देते हैं

T.B.C.: 43/13/ET-III. 81 P.T.O.
64. An infinite subset of a discrete topological space is:
   (A) non-compact               (B) compact
   (C) connected                 (D) disconnected

Or

A strongly connected Markov chain is also called as:
   (A) Irreducible               (B) Aperiodic
   (C) Regression                (D) None of these

65. Which of the following is false?
   (A) A sequentially compact metric space is totally bounded
   (B) A sequentially compact metric space has Bolzano-Weierstrass property
   (C) A compact metric space has Bolzano-Weierstrass property
   (D) A sequentially compact metric space may not be compact

Or

Let $X_1, X_2, \ldots \ldots$ be i.i.d. $N(1, 1)$ random variables. Let:

$$S_n = X_1^2 + X_2^2 + \ldots \ldots + X_n^2$$

for $n \geq 1$

Then:

$$\lim_{{n \to \infty}} \frac{\text{Var}(S_n)}{n}$$

is:

   (A) 0               (B) 1
   (C) 4               (D) 6
64. विकट संस्थातिक समांत्र का अपरिमित उपसमुच्चय है:

(A) असंहत  
(B) संहत  
(C) समब्रेजत  
(D) असमब्रेजत

अथवा

दृढता के साथ समब्रेजत मारकों शृंखला को यह भी कहते हैं:

(A) अलधुकरणीय  
(B) अनावरक  
(C) समाध्र्यण  
(D) इनमें से कोई नहीं

65. निम्नलिखित में से कौनसा प्रश्न है?

(A) अनुक्रम: संहत दूरीक समांत्र पूर्णतया परिवर्त है

(B) अनुक्रम: संहत दूरीक समांत्र का बोल्जानो-वाइएस्ट्रास गुणधर्म होता है

(C) संहत दूरीक समांत्र का बोल्जानो-वाइएस्ट्रास गुणधर्म होता है

(D) अनुक्रम: संहत दूरीक समांत्र संहत नहीं भी हो सकता

अथवा

मान लीजिए कि $X_1, X_2, \ldots \ldots \ldots \ldots$ i.i.d. $N(1, 1)$ यादृच्छिक चर हैं। मान लीजिए कि:

$$S_n = X_1^2 + X_2^2 + \ldots + X_n^2 \quad n \geq 1$$

तो फिर

$$\lim_{n \to \infty} \frac{\text{Var}(S_n)}{n}$$

होगा:

(A) 0  
(B) 1  
(C) 4  
(D) 6

T.B.C. : 43/13/ET-III 83

P.T.O.
The Lagrangian is a function of:

(A) \(q_k, p_k\) \hspace{1cm} (B) \(q_k, \dot{q}_k\)
(C) \(q_k, \dot{p}_k\) \hspace{1cm} (D) \(p_k, \dot{p}_k\)

Or

The mean blood pressure (B.P.) of a group of persons was determined. After an intervention trial, the mean B.P. was estimated again. To determine the significance of intervention the test to be applied is:

(A) \(\chi^2\)-test \hspace{1cm} (B) Paired \(t\)-test
(C) \(z\)-test \hspace{1cm} (D) F-test

The complex potential due to a source \(m\) at \(z = z_0\) is:

(A) \(m \log (z - z_0)\) \hspace{1cm} (B) \(-m \log (z - z_0)\)
(C) \(m \log (z + z_0)\) \hspace{1cm} (D) \(-m \log (z + z_0)\)

Or

The probability of accepting a lot with \(N = 1000, n^* = 89, c = 2, p = 0.02\) is:

(A) 0.73 \hspace{1cm} (B) 0.74
(C) 0.75 \hspace{1cm} (D) 0.76

A one-to-one continuous mapping of a compact space onto a Hausdorff space is:

(A) a homeomorphism \hspace{1cm} (B) not a homeomorphism
(C) not well defined \hspace{1cm} (D) none of these
66. लगांजी किसका फलन है?
(A) \( q_k, p_k \)  
(B) \( q_k, \dot{q}_k \)  
(C) \( q_k, \dot{p}_k \)  
(D) \( p_k, \dot{p}_k \)

अंद्रा
एक समूह के व्यक्तियों का औसत ब्लड प्रेशर (बी.पी.) निर्धारित किया गया था। हस्ताक्षरी परीक्षण के बाद, औसत बी.पी. की फिर से जांच की गई। हस्ताक्षर (इंटरवेशन) की सार्वजनिकता निर्धारित करने के लिए कौन सा परीक्षण किया जायेगा?
(A) \( \chi^2 \)-परीक्षण  
(B) युग्मित ट-परीक्षण  
(C) ज-परीक्षण  
(D) F-परीक्षण

67. \( z = z_0 \) पर रूप में \( m \) के कारण से सम्मान विभव है:
(A) \( m \log (z - z_0) \)  
(B) \(- m \log (z - z_0) \)  
(C) \( m \log (z + z_0) \)  
(D) \(- m \log (z + z_0) \)

अंद्रा
\( N = 1000, n = 89, c = 2, p = 0.02 \) के साथ प्रचय को स्वीकार करने की प्राप्तिकता है:
(A) 0.73  
(B) 0.74  
(C) 0.75  
(D) 0.76

68. हाइड्रोफ तरंगों पर संहित समय का अलग-अलग संतत मानचित्रण क्या है?
(A) समप्रायुक्त  
(B) समप्रायुक्त नहीं  
(C) सुपरहगुण नहीं है  
(D) इनमें से कोई नहीं

T.B.C. : 43/13/ET-III  
85  
P.T.O.
The joint probability density function of random variables X and Y is given by:

\[ f(x, y) = \begin{cases} 8xy, & 0 < x < y < 1, \\ 0, & \text{elsewhere} \end{cases} \]

The conditional probability density function of X given y is:

(A) \( \frac{2x}{y^2} \)  
(B) \( \frac{2y}{1-x^2} \)  
(C) \( \frac{2y}{x^2} \)  
(D) \( \frac{2x^2}{y} \)

69. If the curve given by \( r = (a \cos u, a \sin u, f(u)) \) is a plane, the function \( f(u) \) is given by:

(A) \( f(u) = u \)  
(B) \( f(u) = u^2 \)  
(C) \( f(u) = u^3 \)  
(D) \( f(u) = \text{constant} \)

Or

If Karl Pearson's coefficient of skewness of a distribution is 0.32, its mean is 29.6 and standard deviation is 6.5, then mode of the distribution is:

(A) 27.00  
(B) 27.50  
(C) 27.51  
(D) 27.52

70. Which of the following is true?

(A) both \( \mathbb{R}^n \) and \( \mathbb{C}^n \) are connected  
(B) \( \mathbb{R}^n \) is connected but \( \mathbb{C}^n \) is disconnected  
(C) \( \mathbb{R}^n \) is disconnected but \( \mathbb{C}^n \) is connected  
(D) both \( \mathbb{R}^n \) and \( \mathbb{C}^n \) are disconnected

T.B.C. : 43/13/ET
यादृच्छिक चरों $X$ और $Y$ का संयुक्त प्रायिकता घनत्व फलन :

$$f(x, y) = \begin{cases} 
8xy, & 0 < x < y < 1, \\
0, & 
\end{cases}$$

के द्वारा दिया गया है। $y$ प्रदत्त $X$ का सम्पूर्ण प्रायिकता घनत्व फलन क्या होगा ?

(A) $\frac{2x}{y^2}$
(B) $\frac{2y}{1-x^2}$
(C) $\frac{2y}{x^2}$
(D) $\frac{2x^2}{y}$

69. यदि $r = (a \cos u, a \sin u, f(u))$ द्वारा दिया गया बक्र समतल है, तो फलन $f(u)$ निम्नलिखित के द्वारा दिया जायेगा :

(A) $f(u) = u$
(B) $f(u) = u^2$
(C) $f(u) = u^3$
(D) $f(u) = \text{अचर}$

अथवा

यदि बेंटन के वैश्वय का कार्ल पियरसन का गुणांक 0.32, है, उसका माध्य 29.6 है और मानक विचलन 6.5 है, तो बेंटन का बहुलक है :

(A) 27.00
(B) 27.50
(C) 27.51
(D) 27.52

70. निम्नलिखित में से कौन सा सत्य है ?

(A) $\mathbb{R}^n$ और $\mathbb{C}^n$ दोनों समबद्ध है
(B) $\mathbb{R}^n$ समबद्ध है परन्तु $\mathbb{C}^n$ असमबद्ध है
(C) $\mathbb{R}^n$ असमबद्ध है परन्तु $\mathbb{C}^n$ समबद्ध है
(D) $\mathbb{R}^n$ और $\mathbb{C}^n$ दोनों असमबद्ध हैं
In a double sampling plan with:

\[ n_1 = 50, \ C_1 = 1, \ n_2 = 100, \ C_2 = 3 \]

if the incoming lots have fraction non-conforming \( p = 0.05 \), then the probability of acceptance on the first sample is:

(A) 0.279        (B) 0.269
(C) 0.259        (D) 0.289

71. If \( G \) is a graph with \( V \) vertices, \( E \) edges and \( R \) regions, then:

(A) \( V + R = E - 2 \)        (B) \( V + R = E + 2 \)
(C) \( V + R = E + 1 \)        (D) \( V + R = E - 1 \)

Or

A continuous random variable \( X \) has probability density function:

\[ f(x) = 3x^2, \ 0 \leq x \leq 1 \]

\[ = 0, \ \text{otherwise} \]

If

\[ P(X \leq a) = P(X > a), \]

then the value of \( a \) is:

(A) \( \left( \frac{1}{3} \right)^{\frac{1}{2}} \)        (B) \( \left( \frac{1}{2} \right)^{\frac{1}{3}} \)
(C) \( \left( \frac{1}{3} \right)^{\frac{1}{3}} \)        (D) \( \left( \frac{1}{2} \right)^{\frac{1}{2}} \)

T.B.C.: 43/13/ET-III 88
अध्याय

\[ n_1 = 50, \ C_1 = 1, \ n_2 = 100, \ C_2 = 3 \] के साथ हिसा: प्रतिचयन आयोजना में यदि आगमी प्रचयों का भर्ना अनानुपर p = 0.05 है, तो प्रथम प्रतिदर्श पर स्वीकारण की प्राप्तिकता होगी:

(A) 0.279  
(B) 0.269  
(C) 0.259  
(D) 0.289

71. यदि \( G, \ V \) शीर्षों, \( E \) कोरों और \( R \) प्रदेश के साथ आरेख (ग्राफ) है, तो फिर:

(A) \( V + R = E - 2 \)  
(B) \( V + R = E + 2 \)  
(C) \( V + R = E + 1 \)  
(D) \( V + R = E - 1 \)

अध्याय

संतत यादृच्छिक चर \( X \) का प्राप्तिकता घनत्व फलन है:

\[ f(x) = 3x^2, \ 0 \leq x \leq 1 \]

\[ = 0, \text{ नहीं तो (otherwise)} \]

यदि

\[ P(X \leq a) = P(X > a). \]

है तो \( a \) का मान होगा:

(A) \( \left(\frac{1}{3}\right)^{\frac{1}{2}} \)  
(B) \( \left(\frac{1}{2}\right)^{\frac{1}{3}} \)

(C) \( \left(\frac{1}{3}\right)^{\frac{1}{3}} \)  
(D) \( \left(\frac{1}{2}\right)^{\frac{1}{2}} \)

T.B.C.: 43/13/ET-III  
89  
P.T.O.
The eigenfunction of Sturm-Liouville boundary value problem:
\[ y'' + \lambda y = 0, \; \lambda > 0 \]
\[ y(0) = y(\pi) = 0 \]
lie in the interval:
(A) \( (0, \pi) \) \hspace{1cm} (B) \( [0, \pi] \)
(C) \( (0, \pi] \) \hspace{1cm} (D) \( [0, \pi) \)

Or

If a statistic \( t \) follows Student's \( t \) distribution with \( n \) d.f., then \( t^2 \) follows:
(A) \( t \) distribution with \( n \) d.f.
(B) \( \chi^2 \) distribution with \( n \) d.f.
(C) F distribution with \( (1, n) \) d.f.
(D) Normal distribution

73. If \( u \) and \( v \) are velocity components in \( r \)-and \( z \)-directions, respectively, the continuity equation for 2D incompressible homogeneous fluid in cylindrical polar coordinates \( (r, z) \) takes the form:
(A) \[ \frac{\partial u}{\partial r} + \frac{\partial v}{\partial z} = 0 \]
(B) \[ \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial z} + \frac{u}{r} = 0 \]
(C) \[ \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial z} + \frac{2u}{r} = 0 \]
(D) \[ \frac{\partial u}{\partial r} + \frac{\partial v}{\partial z} + \frac{u}{r} = 0 \]

Or

50 electric tubes of a certain type were tested without replacement. The test terminated after first five tubes blow. The failures were recorded at the following times (in hours):

120, 195, 260, 350, 420

Assuming failure time distribution to be single parameter exponential, the reliability of the electric tubes at \( t = 500 \) hours is:
(A) \( e^{-0.10} \) \hspace{1cm} (B) \( e^{-0.11} \)
(C) \( e^{-0.13} \) \hspace{1cm} (D) \( e^{-0.12} \)

T.B.C.: 43/13/ET-III
72. स्टॉर्म-ल्यूबिल बाण्डरी मान समस्या:

\[ y'' + \lambda y = 0, \lambda > 0 \]
\[ y(0) = y(\pi) = 0 \]

का आंशिक फलन अंतराल में स्थित है:

(A) (0, \pi) \hspace{2cm} (B) [0, \pi]
(C) (0, \pi] \hspace{2cm} (D) [0, \pi)

अंशवा

यदि प्रतिदिन \( t \), \( n \) d.f. के साथ विद्वानीयों के \( t \) बंटन का अनुवर्तन करता है तो \( t^2 \) अनुवर्तन करता है:

(A) \( n \) d.f. के साथ \( t \) बंटन
(B) \( n \) d.f. के साथ \( \chi^2 \) बंटन
(C) (1, \( n \)) d.f. के साथ \( F \) बंटन
(D) सामान्य बंटन

73. यदि \( u \) और \( u, r \) और \( z \) दिशाओं में वे घटक हैं, तो बेनाकार ध्वनि निरदेशांकों \( (r, z) \) में 2D असंपीड़क समस्या तरल के लिए सांतत्य समीकरण क्या रूप लेता है?

(A) \( \frac{\partial u}{\partial r} + \frac{\partial v}{\partial z} = 0 \) \hspace{2cm} (B) \( \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial z} + \frac{u}{r} = 0 \)
(C) \( \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial z} + \frac{2u}{r} = 0 \) \hspace{2cm} (D) \( \frac{\partial u}{\partial r} + \frac{\partial v}{\partial z} + \frac{u}{r} = 0 \)

अंशवा

एक प्रकार की 50 विज्ञानी की टूटवां को, प्रतिस्थापन के बागेर जुड़ा गया था। पहली पाँच टूटवां के पुकं जा ने के बाद परीक्षण समाप्त हो गया। असफलताओं को निम्नलिखित समयों (घंटे में) पर दर्ज किया गया था:

120, 195, 260, 350, 420

असफलता समय वितरण को एकल प्राचीन चरखातून्की मानते हुए, विज्ञानी की टूटवां की विश्वसनीयता \( t = 500 \) घंटों पर है:

(A) \( e^{-0.10} \) \hspace{2cm} (B) \( e^{-0.11} \)
(C) \( e^{-0.13} \) \hspace{2cm} (D) \( e^{-0.12} \)

T.B.C. : 43/13/ET-III

91

P.T.O.
74. Which of the following statements is false?

(A) A monotonic function on \([a, b]\) is Riemann integrable on \([a, b]\)

(B) A continuous function on \([a, b]\) is Riemann integrable on \([a, b]\)

(C) If \(f\) is bounded on \([a, b]\) and monotonic on \((a, b)\), then \(f\) is Riemann integrable on \([a, b]\)

(D) A discontinuous function on \([a, b]\) is not Riemann integrable on \([a, b]\)

Or

A fraction non-conforming control chart with \(LCL = 0.01, CL = 0.10, UCL = 0.19\) is used to control a process. If \(3\sigma\) limits are used, the sample size for the control chart is:

(A) 50
(B) 200
(C) 150
(D) 100

75. If \(C\) is the circle \(|z| = 4\), then

\[\int_{C} \frac{e^z}{(z^2 + \pi^2)^2} \, dz\]

is equal to:

(A) \(\pi i\)  
(B) \(-\pi i\)  
(C) \(-i/\pi\)  
(D) \(i/\pi\)

Or

The O.C. function of a sequential sampling plan for which \(p_0 = 0.02, \alpha = 0.05, p_1 = 0.5, \beta = 0.10\), with best incoming lot quality is:

(A) 0  
(B) 0.10  
(C) 0.95  
(D) 1

G.B.C. : 43/13/ET-III
74. निम्नलिखित में से कौन सा कथन मिलता है?
(A) \([a, b]\) पर एककिश्चत्र फलन \([a, b]\) पर रीमान समाकलनीय है
(B) \([a, b]\) पर सांतत्य फलन \([a, b]\) पर रीमान समाकलनीय है
(C) यदि \(f, [a, b]\) पर परिभाषित है और \((a, b)\) पर एककिश्चत्र है, तो \(f, [a, b]\) पर रीमान समाकलनीय है
(D) \([a, b]\) पर असातत्य फलन \([a, b]\) पर रीमान समाकलनीय नहीं है

अवधार

\[LCL = 0.01, CL = 0.10, UCL = 0.19\] के साथ भिन्न अनातुरुप नियन्त्रण चार्ट को, प्रक्रिया को नियंत्रित करने के लिए उपयोग किया गया है। यदि 3\(\sigma\) सीमाओं उपयोग की जाती, तो नियन्त्रण चार्ट के लिए प्रतिदिन आकार है:

(A) 50
(B) 200
(C) 150
(D) 100

75. यदि \(C\) चूर्ण \(|z| = 4\) है, तो:

\[
\int_C \frac{e^z}{(z^2 + \pi^2)^2} dz
\]

किसके बराबर है?

(A) \(\pi i\)
(B) \(-\pi i\)
(C) \(-i/\pi\)
(D) \(i/\pi\)

अवधार

अनुक्रमिक प्रतिच्छन्न आयोजना जिसके लिए \(p_0 = 0.02, \alpha = 0.05, p_1 = 0.5, \beta = 0.10\) है, सबसे अधिक आयोजन प्रचार गुणधर्म के साथ O.C. फलन है:

(A) 0
(B) 0.10
(C) 0.95
(D) 1